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Abstract

In certain electronic systems, strong Coulomb interactions between electrons can favor
novel electronic phases that are difficult to anticipate theoretically. Accessing fundamen-
tal quantities such as the density of states in these platforms is crucial to their analysis.
In this thesis, I explore the application of two measurement techniques towards this goal:
capacitance measurements that probe the thermodynamic ground state of an electronic
system and planar tunneling measurements that access its quasiparticle excitation spec-
trum. Both techniques were applied to van der Waals materials, a class of crystals com-
posed of layered atomic sheets with weak interplane bonding which permits the isolation
of single and few-layer sheets that can be manually assembled into heterostructures.

Capacitance measurements were performed on a material system commonly known
as magic-angle twisted bilayer graphene (MATBG). When two monolayers of graphene,
a single sheet of graphite, are stacked on top of one another with a relative twist between
their crystal axes, the resultant band structure is substantially modified from the cases of
both monolayer graphene and Bernal-stacked (non-twisted) bilayer graphene. At certain
magic angles, the low energy bands become extremely flat, quenching the electronic kinetic
energy and allowing strong electron–electron interactions to become relevant. Exotic in-
sulating and superconducting phases have been observed using conventional transport
measurements. By accessing the thermodynamic density of states of MATBG, we estimate
its low energy bandwidth, Fermi velocity, and interaction-driven energy gaps.

Time-domain planar tunneling was performed on a heterostructure that consisted of
monolayer graphene and hexagonal boron nitride (serving as the dielectric and tunnel
barrier) sandwiched between a graphite tunneling probe and metal gate. Tunneling cur-
rents were induced by applying a sudden voltage pulse across the full parallel plate struc-
ture. The lack of in-plane charge motion allowed access to the tunneling density of states
even when the heterostructure was electrically insulating in the quantum Hall regime.
These measurements represent the first application of time-domain planar tunneling to
the van der Waals class of materials, an important step in extending the technique to new
material platforms.
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Chapter 1

Introduction

1.1 Motivation

At a basic level, we learn about the world by interacting with the objects around us. For

the physicist, interaction takes the form of measurement in which we either gently per-

turb a system from equilibrium and study its subsequent response, or we excite it to a

higher energy in order to understand its possible excitations. In the field of solid state

physics, we attempt to understand the myriad ways in which electrons organize them-

selves inside materials, often through directly accessing their electrical degrees of free-

dom in the laboratory. This thesis will focus on the application of a few specific electronic

measurements towards the goal of revealing the beautiful and sometimes unexpected be-

havior of the electrons in van der Waals platforms.

1.2 Overview and Organization

To the nonexpert, the term van der Waals material may sound esoteric, but the reader is

likely already familiar with one important example. Graphite, the substance commonly

used in pencils, consists of two-dimensional atomic sheets of carbon stacked on top of
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side

top

Figure 1-1: Graphite exfoliation Graphite is exfoliated from the core of a pencil as it is
dragged across a piece of paper. The graphite trail consists of small flakes of exfoliated
graphite of varying thickness and lateral size. The atomic structure of graphite consists of
a stack of atomic sheets of carbon atoms on a honeycomb lattice. Neighboring layers are
staggered.

one another. Within each sheet, the neighboring carbon atoms are chemically bonded

very strongly to one another while the interaction between neighboring sheets is weak

and mediated by van der Waals molecular forces [1, 2]. Graphite’s small interplane cou-

pling allows for isolation of single- and few-layer graphite crystals by mechanically ex-

foliating the parent compound. In fact, it is this property that makes graphite useful as

a writing utensil. When one drags a pencil across a sheet of paper, microscopic crystals

of graphite are exfoliated from the larger graphite composite core and deposited onto the

paper, leaving behind a legible trail as shown in Figure 1-1. The ability to efficiently iso-

late single crystalline monolayers is not generic to all crystals and is the hallmark of a

van der Waals material. Most crystals are too brittle, with neighboring atomic planes too

strongly coupled, to isolate a single sheet. Other material systems require advanced fabri-

cation techniques to access quasi-two-dimensional limits such as molecular beam epitaxy

[3] for semiconductors [4] or pulsed laser deposition [5, 6] for complex oxides [7].

So far, I have only mentioned graphite, but it turns out there are dozens of van der
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Waals materials with a wide variety of electronic phases ranging from band insulators

to superconductors [8]. The ability to isolate atomically thin sheets of such diverse ma-

terials enables experimentalists to fabricate van der Waals heterostructures by manually

stacking and sandwiching together distinct planar materials [9, 10]. In Chapter 2, I will

explore both the two-dimensional physics of common van der Waals materials as well

as the modern fabrication techniques that allow the construction of heterostructures with

increasingly fine-tuned electronic properties.

The ability to precisely build a stack of van der Waals layers affords us the opportu-

nity to explore the physics of two-dimensional materials with a variety of techniques. One

popular technique, electron transport, involves treating the van der Waals heterostructure

as a resistor of unknown value. Figure 1-2 shows the measurement scheme with a mono-

layer of graphite, commonly referred to as graphene, and equivalent circuit in panels a

and b, respectively. By sourcing a voltage V and measuring a current I, the material’s

resistance R can be inferred from Ohm’s law V = IR. However, electron transport is only

capable of measuring electrons that can carry an electrical current through the sample.

In other words, transport measurements access extended electronic states which support

the movement of charge across the full extent of the sample. One drawback of trans-

port schemes is that spatially localized electrons, which do not efficiently participate in

transport, are neglected. Furthermore, it is difficult to extract fundamental equilibrium

properties of the material (even qualitatively) due to the non-equilibrium nature of elec-

tron transport which necessarily involves a complicated mess of electrons colliding and

scattering off of each other, the underlying ionic lattice, and the sample boundaries.

Are there other measurement techniques that might allow us to access the equilibrium

properties of van der Waals materials? Taking inspiration from basic circuit elements, we

might be inspired to treat the sample not as a resistor as done in transport but as a capac-

itor. If a metal electrode is separated from the van der Waals material by an insulating di-

electric layer (which may itself be a van der Waals material), the electrode–van der Waals
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a) b) c) d)

I I Ĩ Ĩ

V V
Ṽ Ṽ

Figure 1-2: Transport and capacitance schemes a) A voltage V is sourced across a mono-
layer graphene device which has been ohmically contacted by a metal as indicated by the
yellow regions. Current I is measured. b) The equivalent circuit treats the graphene flake
as a resistor. c) In a capacitance scheme, an AC voltage Ṽ is applied to a graphene flake
(gray) which has been contacted ohmically. The inert dielectric (light pink) is also a van
der Waals material and separates the graphene from a nearby metal electrode (yellow).
The AC current Ĩ is measured. d) The equivalent circuit treats the graphene–electrode
structure as a capacitor.

system forms an approximately parallel plate capacitor geometry as shown in panels c

and d of Figure 1-2. (There is still a series resistance arising from the sample’s in-plane

resistivity, however, this is negligible at sufficiently low measurement frequency.) It turns

out that measuring the capacitance of such a device is directly related to the material’s

electronic compressibility [11] which in the context of this thesis will be synonymous with

the thermodynamic density of states which determines the amount of energy required to

add electrons to the material. The thermodynamic density of states is one of the most

fundamental quantities of interest because it allows one to anticipate whether a material

is insulating or conducting, whether strong electron–electron interactions are likely to be

relevant, the role of localization, as well as a plethora of other electronic properties. In

Chapter 3, I will explain the relationship between the thermodynamic density of states

and capacitance, cryogenic capacitance bridge measurement techniques, as well as how

to interpret capacitance data and extract fundamental quantities of interest such as energy
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gaps and bandwidths.

In Chapter 4 I will discuss the application of capacitance measurements to a van der

Waals heterostructure known as twisted bilayer graphene. When graphite is exfoliated,

it often yields double-layer crystals known as bilayer graphene. The most common con-

figuration is Bernal or AB stacking [12, 13], so named for the alignment of the A and B

sublattices of each monolayer as shown in Figure 1-3. Bilayer graphene has also been

studied in the AA stacking configuration [14, 15] which occurs less frequently. Twisted

bilayer graphene, a third allotrope, is rarely formed from exfoliation alone and is typically

fabricated by manually stacking two monolayer of graphene which are given an explicit

relative rotation as shown in Figure 1-3.

AABernal (AB) Twisted

Figure 1-3: Stacking configurations of bilayer graphene Bernal (AB) stacking is the most
common type because it is the lowest energy ionic configuration. AA stacking is also
found frequently with graphite exfoliation. Twisted bilayer graphene occasionally occurs
with exfoliation, but typically it is explicitly fabricated in the laboratory with higher yield
and fine control over its twist angle.

When we directly stack and rotate two crystals, we induce a long-range spatial vari-

ation known as a moiré pattern. The spatial modulation can be thought of as the two-

dimensional version of a beat frequency in which two waveforms of slightly different

frequencies f1 and f2 experience a slow modulation at their difference ∆ f = | f1 − f2|. For

fi that are close in value, the modulation period T becomes very large, T = 1
∆ f , as shown

in Figure 1-4.

For two graphene crystals which are slightly misaligned by θ, their spatial period of
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Figure 1-4: Beating effect in one dimension a) Two sinusoids with frequencies f1 = 1
and f2 = 1.05 are plotted. b) The sum of the two sinusoids creates a beating pattern in
which the amplitude is modulated over a period of 20.
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modulation λ is given by

λ =
a/2

sin (θ/2)
(1.1)

where a = 2.46 Å is the lattice constant of graphene. For small values of θ it is obvious that

λ ≫ a, effectively renormalizing the lattice constant and creating a so-called superlattice.

For example, Figure 1-5 shows the superlattice formed from two monolayers twisted at

an angle of 5∘.

Figure 1-5: Moiré pattern from twisted bilayer graphene When two monolayers of
graphene are twisted by a small angle, the induced moiré pattern can be much larger
than the original lattice constant of graphene. Here, an angle of 5∘ induces a triangular
superlattice whose unit cell includes dozens of constituent graphene unit cells from each
layer.

The spatial modulation of the lattice creates an effective potential which interacts with

the electrons and influences the allowed energy levels in much the same way that a tradi-
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tional atomic potential generates a band structure via Bragg scattering at high symmetry

points. The superlattice potential has a strong influence on the behavior of electrons at

small twist angles where the relevant electrons of the two layers are close to one another

in momentum space, allowing for hybridization. Numerical calculations have shown that

at certain small angles known as the magic angles, the electronic band structure becomes

incredibly flat [16]. Because the electronic kinetic energy is proportional to the width

of the energy bands, the kinetic energy is extremely suppressed in this limit. When the

kinetic energy is very weak, this provides an opportunity for potential energy contribu-

tions, in the form of Coulomb forces between pairs of electrons, to become relevant. This

is an unusual state of affairs: typically, the electron density in most materials is large

enough that the Coulomb potential between two electrons at relevant length scales is ef-

fectively screened by the presence of the other electrons—much like a Faraday cage. In

the limit of strong electron–electron Coulomb repulsion, traditional single-particle band

theory fails and exotic electronic phases emerge. Previous measurements have revealed

an unexpected insulating state [17] where one would naïvely anticipate a metallic state as

well as a possibly unusual form of superconductivity [18]. In Chapter 4 I will explore the

application of the measurement techniques discussed in Chapter 3 to two twisted bilayer

graphene heterostructures at twist angles close to the first magic angle. By accessing the

compressibility, important quantities such as the Fermi velocity, energy bandwidth, and

interaction-driven energy gaps can be estimated. Chapter 4 will also provide a compar-

ison to results from other measurement techniques as well as a connection with theory

proposals for magic-angle graphene systems.

The thermodynamic measurements described previously access the ground state

properties of electronic systems. Instead of gently perturbing an equilibrium system and

studying its response, it is possible to excite the electronic system in order to access its

allowed higher energy states. Perhaps it is useful to picture an analogy from classical me-

chanics. Consider a ball sitting in the valley shown in Figure 1-6. The ball is in its ground
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b)

c)

δE

E

x

Figure 1-6: Ball sitting in a potential energy profile a) The ball is in the ground state at
the bottom of the valley where its gravitational potential energy is minimized. At rest,
it is in equilibrium. b) To probe the properties of the ground state, the ball can be given
a small perturbation (a small kick) and its response, which is related to its equilibrium
state, is observed. c) The potential energy landscape can also be probed by exciting the
ball instantaneously out of its ground state and into a higher energy (metastable) state on
the shoulder of the hill.
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state when at the bottom of the valley as shown in panel a. Here, the ball’s gravitational

potential energy is minimized. In order to learn more about the ground state properties of

the system, we might be tempted to give the ball a small perturbation in order to explore

the potential energy landscape. If we imagine giving the ball a small kick of energy δE

such that δE is much less than the potential energy of the hill at its highest point, then

the ball will oscillate back and forth about its minimum as shown in panel b. If we could

record the frequency of oscillation, this would tell us the local steepness of the minimum.

This is conceptually similar to the thermodynamic capacitance measurements described

previously in which we apply a small voltage modulation to an electronic system and ask

how much charge is modulated in response.

Alternatively, we could try to excite the ball to a much higher energy level by giving it

a large kick as shown in panel c. The ball would then be able to explore the higher energy

landscape. If we could record its maximum displacement x from its ground state position

x = 0 as a function of the energy of excitation E, then the function E(x) would exactly

map out the potential landscape (energy spectrum). After exciting to a higher energy,

the ball would then be allowed to roll back and forth, exchanging potential and kinetic

energy indefinitely. If we assume some dissipative mechanism like friction ultimately

brings the ball back to its ground state energy, then we could also monitor the lifetime

τ of each excitation as a function of energy E. The quantity τ(E) would tell us a great

deal about the structure of the potential energy landscape. For example, if we imagine

exciting the ball to one of the shoulders on the left or right of the minimum, the ball

would experience a small restoring force from the shallow slope and take much longer to

fall to equilibrium. However, if we excited the ball to one of the steep slopes immediately

adjacent to the minimum, the large restoring force (and friction) would quickly bring the

ball back to its ground state. In this way, studying high energy excitations can tell us a

great deal about the energy landscape away from the ground state energy.

In this thesis, I will describe a unique type of electron tunneling measurement in which
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we attempt to measure the relative ease with which we can suddenly inject electrons into

(or out of) an electronic system at various energies. The basic planar tunneling scheme is

shown in Figure 1-7. In panel a the energy diagram shows a metallic structure (yellow)

being biased across an insulating barrier (pink) and injecting electrons into the available

energy levels of a system under study (gray). The Fermi level of the material is indi-

cated by the gray dashed line that separates filled energy bands from empty ones. The

total current which is tunneled through the potential barrier into the system under study

is proportional to the integrated single-particle density of states within the energy bias

window [19]. The tunneling scheme can be achieved in van der Waals materials by sep-

arating a two-dimensional material under study, say graphene, from a metallic electrode

with a thin insulating barrier (typically two to four atomic layers thick) as shown in panel

b. In this thesis the insulating barrier will always be hexagonal boron nitride (which also

serves as the dielectric layers in all devices).

In practice, after electrons are tunneled, they must relax to the Fermi level in order to

be pulled out of the planar device through a contact in order to be measured by an ampli-

fier further away. This means that there are two impedances that must be considered: the

tunneling resistance and the in-plane resistance as shown in panel c. This poses a prob-

lem: if the in-plane resistance of the material (which is a property of relaxation and scat-

tering at the Fermi level) is much larger than the tunneling resistance (which is a property

of the single-particle density of states within the excitation window), then the measured

tunneling current will be dominated by properties of the Fermi level. In the worst cases,

the in-plane resistance will be so large that the extracted current will be too small to be

measurable above electrical noise. This issue is particularly egregious in high magnetic

field when two-dimensional systems undergo Landau quantization and the in-plane re-

sistance oscillates rapidly as a function of the total carrier density. Chapter 5 will explore

this conundrum in more detail, introduce a contactless pulsed tunneling scheme which

avoids these issues, and discuss its modifications that were necessary for application to
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van der Waals systems. Chapter 6 will demonstrate the application of this contactless

time-domain technique to monolayer graphene at high magnetic field in the quantum

Hall regime.

Finally, in Chapter 7 I will briefly discuss the status of capacitance and tunneling mea-

surements in the broader quest to understand van der Waals materials. There are many

van der Waals systems that have not been studied with capacitance and tunneling tech-

niques. I will discuss a few promising directions which are currently underway.
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I

Figure 1-7: Basic planar tunneling scheme a) The schematic shows the tunneling elec-
trode (yellow) being biased across an insulating barrier (pink) by a voltage V < 0 and
injecting electrons into the available energy levels of a material (gray). b This tunneling
structure can be fabricated from van der Waals materials. For example, graphene can be
tunnel-coupled to a metal electrode with few-layer hexagonal boron nitride acting as the
insulating barrier. c The effective DC circuit shows the contributions from both tunneling
and in-plane resistances. It is important to have Rtunnel ≫ Rin-plane at all times.
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Chapter 2

Van der Waals Materials

2.1 Chemical Bonding in Solids

Solid materials form due to the ability of crystalline order to minimize the electrostatic in-

teractions of the constituent ions and electrons while still obeying Pauli exclusion. If one

takes into account the great diversity of crystal structures, it should come as no surprise

that the chemical bonding that binds solids together comes in a variety of flavors. Per-

haps the most well known bond types are the ionic and covalent bonds which are largely

responsible for gluing together the majority of compounds around us with substantial

binding energies. Ionic bonding occurs whenever it is energetically favorable for an atom

to lose one of its valence electrons so that it may occupy the available orbital of a neigh-

boring atom. Ionic bonding is frequently illustrated with common table salt in which a

sodium atom, containing one valence electron in the outer 3s valence shell, loses one elec-

tron to a nearby chlorine atom which has one available orbital in its outer 3p valence shell

as shown in panel a of Figure 2-1. The positively charged sodium ion and the negatively

charged chlorine ion then attract one another via the Coulomb force. The cost to ionize

the sodium atom by liberating its single valence electron is more than made up for by

both filling chlorine’s outer 3p shell to a more stable configuration as well as the cohesive
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energy gained by the positive and negative ion attracting one another. The end result is

that the energy per molecule in a sodium chloride crystal is 6.4 eV less than separated

neutral atoms [20]. In contrast to ionic bonding, covalent bonding consists of the sharing

of one electron between two atoms or molecules. In the case of molecular hydrogen H2,

two hydrogen atoms with a single 1s electron can partially overlap one another in order

to experience a full 1s2 valence shell over the spatial extent of the bond as shown in panel

b of Figure 2-1. In many materials covalent bonding can rival the strength of common

ionic bonds. For example, the carbon atoms in diamond form a tetragonal structure with

a covalent bond energy of 711 kJ mol−1 [21] resulting in a binding energy of about 7.4 eV

per molecule.
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a)

Na Cl

b)

H H

Figure 2-1: Chemical bonds a) NaCl forms through an ionic bond in which the outer
3s electron in the sodium atom is ionized and fills the empty orbital in the 3p shell of
chlorine. b) A covalent bond forms between hydrogen atoms so that their half-filled 1s
shells can experience a full 1s2 shell over the extent of the bond.
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2.1.1 Van der Waals Forces

While ionic and covalent bonding are responsible for tightly gluing together the atoms

and molecules that make up solid materials, there exists a set of intermolecular forces

which interact with much lower energy scales but, nonetheless, are sufficient to form

crystalline phases from electrically neutral atoms without the direct exchange of elec-

trons. Johannes van der Waals famously incorporated these intermolecular forces into

his equation of state which improved upon the ideal gas law by considering both the

volume of molecules and their weak attractive interactions [22]. Due to his pioneering

work, the set of generalized attractive and repulsive intermolecular forces are known as

van der Waals forces. Although the full range of complex intermolecular interactions is

beyond the scope of this thesis, the relevant forces in layered van der Waals solids take

the form of dipole–dipole interactions. This may seem counterintuitive because in many

van der Waals solids the individual layers are symmetric with respect to reflection across

the plane. For example, graphene’s relevant π bonds extend perpendicularly away from

the honeycomb structure in a symmetric fashion. Hence, each layer is nonpolar in the

out-of-plane direction and experiences no permanent dipole moment. However, it turns

out that quantum mechanical fluctuations in the positions of the electrons can create in-

stantaneous dipoles through the so-called London dispersion force first described by Fritz

London [23–25]. The instantaneous dipole in one layer can in turn induce a dipole in an

adjacent layer and form an attractive interaction. Despite these subtleties, the essential

idea is captured by considering the basic electrostatics of two interacting atomic dipoles

as shown in panels a–c in Figure 2-2.

In panel b of Figure 2-2, the first atom develops spontaneous dipole moment p1. The

electric field generated far away from the dipole moment is proportional to p1
r3 . Thus, at

the separation R of the two atoms the electric field strength E ∼ p1
R3 . The electric field will

induce a dipole moment in the second atom, producing panel c of Figure 2-2. The second

atom will acquire a dipole moment p2 = αE ∼ αp1
R3 where α is the polarizability of the
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tim
e

Figure 2-2: Dipole–dipole interaction a) Two neutral atoms are adjacent to one another.
b) Quantum mechanical fluctuations create a spontaneous dipole in the left atom. c) The
newly created dipole induces a (possibly unequal) dipole in the second atom by encour-
aging negative charge to migrate close to the nucleus of the first atom.
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atom. The two dipoles have an interaction energy U that follows U ∼ p1 p2
R3 ∼ αp2

1
R6 , which

demonstrates the important result that the dipole–dipole interaction falls off quickly with

separation as 1
R6 . The rapid decrease in interaction strength with distance is why the van

der Waals forces are so weak in comparison to ionic and covalent processes.

The previous calculations would lead one to believe that two dipoles would lower

their energy by attracting to one another indefinitely by sending R → 0. At short distance,

our treatment of each polarized atom as a perfect dipole would fail, but more importantly,

strong repulsion ultimately arising from Pauli exclusion would prevent small separations

from being energetically favorable. As two atoms are brought closer together, their spatial

overlap forces electrons to occupy empty higher energy orbitals to avoid being in the same

quantum state as their neighbor. At short distance this becomes very costly. This type of

short-range repulsion is typically modeled with an interaction of the form 1
R12 or e−R [20].

Taking short-range repulsion into account, the full interatomic energy is described by the

Lennard–Jones potential:

U(R) = 4ε

(( σ

R

)12
−
( σ

R

)6
)

(2.1)

where ε, σ > 0 are material-dependent parameters. This potential has a stable minimum

around r0 = 21/6σ as shown in panel a of Figure 2-3.

The details worked out previous apply to atoms and molecules in three dimen-

sions. The situation is quantitatively, but not qualitatively, different for the case of two-

dimensional layered sheets. Here, we imagine charge fluctuations on one side of an

atomic layer inducing a dipole moment in the adjacent layer. The full calculation which

determines the binding energy and equilibrium separation of a layered structure is quite

involved and necessitates advanced numerical methods. For two-dimensional sheets it

turns out that the induced dipole–dipole interaction falls of as 1
R4 instead of 1

R6 in the case

of three-dimensional atomic dipoles. The equilibrium separation can be faithfully calcu-
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Figure 2-3: Van der Waals potential strength a) General Lennard–Jones potential for
atomic dipoles showing the stable minimum around r = 21/6σ where σ is the value at
which the potential vanishes. b) Calculated van der Waals binding energy as a function
of layer separation for two layers of graphite (Bernal-stacked bilayer graphene) adapted
from reference [2]. For bulk graphite the layer separation was found to be 3.76 Å which
agrees well with the experimentally verified value of around 3.35 Å [26].

39



lated as done in reference [2] and replotted in panel b of Figure 2-3 where the authors

found a layer separation for bulk Bernal-stacked graphite of 3.76 Å. This analysis agrees

nicely with experimentally determined values such as 3.35 Å according to reference [26].

Similar calculations were also successful at modeling additional van der Waals layered

materials such as hexagonal boron nitride and molybdenum disulfide [2].

2.2 Monolayer Graphene

2.2.1 Thermodynamic Stability

Graphite was the first van der Waals material to be thinned down and isolated in the

monolayer limit in 2004 [27]. Despite theoretical interest as early as 1947 [28], it took

many decades for graphene to become a laboratory reality due to the widespread belief

that two-dimensional crystals are thermodynamically unstable according to the Mermin–

Wagner theorem [29]. The basic notion is that in two dimensions, long-wavelength den-

sity fluctuations which grow in magnitude logarithmically with the crystal size will even-

tually destroy the crystalline order for sufficiently large crystals at finite temperature. In

reality, when graphene is prepared in the laboratory, it is either exfoliated onto a substrate,

typically SiO2 [27], which tethers the atoms with van der Waals forces and stabilizes the

graphene, or it is suspended over trenches [30] and anharmonic coupling of the in-plane

and out-of-plane phonons allows ripples to form and stabilize the long-range order [31].

2.2.2 Crystal Structure

The crystal structure of graphene consists of a two-dimensional plane of carbon atoms in

a honeycomb structure. The honeycomb structure itself is not a Bravais lattice, however, it

forms a triangular Bravais lattice with a two-atom basis. The bond length between carbon
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Figure 2-4: Graphene crystal structure and Brillouin zone (Left) Graphene forms a hon-
eycomb lattice of carbon atoms with bond length 1.42 Å. Graphene’s Bravais lattice is
triangular with a two-atom basis. The two sublattices (A and B) of graphene are depicted
with blue and red carbon atoms. The triangular basis vectors are given by a1 and a2 and
δB gives the displacement from the unit cell origin to the second sublattice. (Right) The
reciprocal Brillouin zone is given by a hexagon whose center Γ point is labeled. The low
energy physics of graphene is concentrated about the valleys at the crystallographically
inequivalent zone vertices labeled K and K′. The K and K′ points are generic features of
the triangular Bravais lattice and not a consequence of the two-atom basis. The conduc-
tion and valence band contact points which occur at K and K′ are a result of the sublattice
symmetry.

atoms is a = 1.42 Å and the triangular lattice is spanned by

a1 =
√

3ax̂ (2.2)

a2 =

√
3a
2

(
x̂ +

√
3ŷ
)

(2.3)

as shown in Figure 2-4. If we convert to reciprocal space, it turns out that graphene’s low

energy band structure is concentrated around the so-called Dirac points which are located

at the valleys on the vertices of the Brillouin zone. These are customarily labeled K and

K′:

K(K′) = ∓ 4π

3
√

3a
x̂. (2.4)
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The other two sets of K and K′ values are related to the above positions in momentum

space by the addition of a reciprocal lattice vector and are therefore crystallographically

equivalent. Each carbon atom has four available valence electrons. Three of these elec-

trons are hybridized sp2 orbitals which have s, px, and py character. These electrons partic-

ipate in the in-plane covalent σ bonding with neighboring carbon atoms and are respon-

sible for the in-plane tensile strength of graphene [32]. The remaining pz orbitals form

π bonds which stick away from the plane of the graphene. It turns out that the energy

scale of the π bonds is significantly lower than that of the σ bonds so that the low energy

electronic properties are only dependent on the π bonds [32]. This means that we can

consider only one electron per atomic site when computing graphene’s low-energy band

structure [28]. Because there is one orbital per atom, the low energy bands will be exactly

half-full when accounting for the spin degeneracy which gives an extra factor of 2 to the

total number of allowed electrons within the π bands. Furthermore, because we will only

consider one orbital per atom and there are two atoms per unit cell (one each from the two

sublattices), there will be two low energy bands. The two previous statements imply that

graphene’s Fermi level will be exactly between the valence and conduction band derived

in the tight-binding model in the absence of extrinsic carrier doping.

2.2.3 Tight-Binding Model

Graphene’s low-energy band structure and many of its most interesting properties can be

derived from a tight-binding model due to the relatively localized nature of the π orbitals

[28]. In a tight-binding model, we consider the local wave function on each atomic site

to consist of an atomic carbon orbital modified perturbatively by the hopping or wave

function overlap with adjacent carbon atoms. Typically, consideration of nearest- and

next-nearest-neighbor atoms is sufficient. Here, we will consider just nearest-neighbor

hopping in the interest of describing the essential features of graphene’s band structure.
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The wave function for the two atom basis takes the form

ψk(r) = akψ
(A)
k (r) + bkψ

(B)
k (r) (2.5)

where ak and bk represent the complex weight of the wave function on each sublattice.

Due to chemical symmetry between the two sublattices, these magnitudes are always

equal (at zero magnetic field) but contain nontrivial relative phase. ψ
(A)
k and ψ

(B)
k are the

Bloch functions which sum over all the relevant orbitals:

ψ
(j)
k =

1√
N

∑
Rl

eik·Rl φ(j)(r − Rl − δj). (2.6)

The term φ(j)(r − Rl − δj) is the relevant π orbital on the atom located within the Bravais

lattice site Rl at the basis position δj. We assume a crystal of N unit cells. We will set

our coordinate system so that the A sublattice coincides with Rl. Then, δA = 0 and the

B sublattice atoms are displaced by δB = −aŷ. By construction, the atomic orbital φ is

an eigenstate of an atomic (Schrödinger) Hamiltonian ℋ0 such that ℋ0φ = ε0φ where

ε0 is the on-site energy of the orbital on the carbon atom. The full tight-binding Hamil-

tonian is broken into two components ℋ = ℋ0 + δℋ where the term δℋ represents the

perturbative hopping interaction from orbitals on adjacent atoms.

The full Hamiltonian ℋ can be expressed in the sublattice basis:

ψ†
kℋψk =

(
a*k b*k

)ψ
(A)*
k ℋψ

(A)
k ψ

(A)*
k ℋψ

(B)
k

ψ
(B)*
k ℋψ

(A)
k ψ

(B)*
k ℋψ

(B)
k


ak

bk

 . (2.7)

Because the two sublattice wave functions ψ
(A)
k and ψ

(B)
k are not perfectly orthogonal, the
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wave function overlap is typically accounted for with an overlap matrix 𝒮 :

ψ†
k𝒮ψk =

(
a*k b*k

)ψ
(A)*
k ψ

(A)
k ψ

(A)*
k ψ

(B)
k

ψ
(B)*
k ψ

(A)
k ψ

(B)*
k ψ

(B)
k


ak

bk

 . (2.8)

In the case of graphene’s tight-binding band structure, the overlap integral is a second-

order effect [32] which we will neglect by making the simplification 𝒮 = 1. Beginning

with the non-perturbative portion, we can calculate the matrix elements:

ψ
(A)*
k ℋ0ψ

(A)
k =

1
N

∫
d2r ∑

m
e−ik·Rm φ(A)*(r − Rm)ℋ0eik·Rl φ(A)(r − Rl) (2.9)

=
1
N ∑

l,m
eik·(Rl−Rm)

∫
d2rφ(A)*(r − Rm)ℋ0φ(A)(r − Rl). (2.10)

Because the atomic orbitals are assumed orthogonal on different atoms, this reduces to

ψ
(A)*
k ℋ0ψ

(A)
k =

1
N ∑

l

∫
d2rφ(A)*(r − Rl)ℋ0φ(A)(r − Rl) (2.11)

= ε0. (2.12)

By sublattice symmetry, ψ
(B)*
k ℋ0ψ

(B)
k = ε0 as well. We can also easily see that the off-

diagonal terms will vanish, since the summations above only survive for terms that con-

sider orbitals on the same atom. The off-diagonal term ψ
(A)*
k ℋ0ψ

(B)
k and its Hermitian

conjugate must vanish because the same atom cannot be found on both the A and B sub-

lattice. Therefore

ℋ0 =

ε0 0

0 ε0

 . (2.13)

Due to chemical symmetry of the two sublattices, the on-site energy terms are identi-

cal. Because this matrix is simply proportional to the identity 1, it simply shifts the to-
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tal energy by a constant and can be entirely neglected. Note that this subtraction is not

possible when one considers the overlap matrix 𝒮 with nearest-neighbor terms (which

contribute off-diagonal terms that cannot be subtracted). Additionally, if one computes

a tight-binding model for other honeycomb structures with distinct chemical species on

each sublattice (such as hexagonal boron nitride), the diagonal terms of this matrix will

not be equivalent and cannot be ignored.

Next, we can compute the perturbative contribution δℋ in which we consider only

nearest-neighbor hopping. Inspection of the crystal structure in Figure 2-4 reveals that

the nearest neighbors of atoms on sublattice A all reside on sublattice B and vice versa.

Therefore, it should be intuitive that the diagonal terms such as ψ
(A)*
k δℋψ

(A)
k must vanish

since the nearest-neighbor hopping is not possible within the same sublattice. Note that

the diagonal terms do not vanish if one considers higher order hopping terms in which

the diagonal terms acquire a momentum-dependent term f (k) arising from next-nearest-

neighbor hopping occurring within the same sublattice. Although this term is equivalent

for the A and B sublattices, it cannot be subtracted due to its momentum dependence. We

have the freedom to subtract a constant value from our Hamiltonian but not a function

f (k) if we wish to compute the band structure. We compute the off-diagonal terms:

ψ
(A)*
k δℋψ

(B)
k =

1
N

∫
d2r ∑

m
e−ik·Rm φ(A)*(r − Rm)δℋeik·Rl φ(B)(r − Rl − δB) (2.14)

=
1
N ∑

<l,m>

eik·(Rl−Rm)
∫

d2rφ(A)*(r − Rm)δℋφ(B)(r − Rl − δB) (2.15)

where we explicitly only consider the indices l and m for which the two orbitals are

nearest-neighbor pairs. We can now simplify the notation dramatically by defining the

nearest-neighbor hopping integral:

t ≡
∫

d2rφ(A)*(r)δℋφ(B)(r − δB). (2.16)
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Referring to Figure 2-4, we can see that this integral considers the hopping between the

atom at the origin of sublattice A and its nearest neighbor directly beneath on sublattice

B. Of course, the atom at the origin has three nearest neighbors, not just the one directly

beneath it. The atom at the origin experiences nearest-neighbor hopping also with the

atoms in the B sublattice located at R = a2 and R = a2 − a1. The value of the integral at

each of these locations must be equivalent to the integral at the origin in the definition of t

by three-fold rotation symmetry of the lattice. Therefore, for the atom on the A sublattice

at Rm, we consider the Rl such that Rl − Rm ∈ {0, a2, a2 − a1}. We find

ψ
(A)*
k δℋψ

(B)
k =

1
N ∑

<l,m>

eik·(Rl−Rm)
∫

d2rφ(A)*(r − Rm)δℋφ(B)(r − Rl − δB) (2.17)

= t
(

1 + eik·a2 + eik·(a2−a1)
)

(2.18)

= tγk (2.19)

where in the last line we have defined the phase factor γk ≡ 1 + eik·a2 + eik·(a2−a1). And

of course the Hermitian conjugate must be ψ
(B)*
k δℋψ

(A)
k = tγ*

k. Therefore, our complete

Hamiltonian (up to a constant shift) is given by

ℋ =

 0 tγk

tγ*
k 0

 . (2.20)
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Solving for the spectrum we find:

0 = |ℋ − Eλ1| = E2
λ − t2 |γk|2 (2.21)

⇒ E± = ±t |γk| (2.22)

= ±t

√√√√3 + 2
3

∑
i=1

cos(k · ai) (2.23)

= ±t

√√√√3 + 4 cos

(√
3akx

2

)
cos

(
3aky

2

)
+ 2 cos

(√
3akx

)
(2.24)

where we have defined a3 ≡ a2 − a1. Figure 2-5 shows the full band structure.
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Figure 2-5: Graphene tight binding band structure (Left) The conduction and valence
π bands are plotted for graphene’s nearest-neighbor tight-binding model. The energy is
plotted in units of the hopping parameter t ≃ 3 meV [33]. (Right) The isoenergy lines are
plotted throughout the Brillouin zone. The K and K′ points are labeled.

The positive (negative) solution represents the conduction (valence) band. These can

be thought of as the crystal-scale equivalent of bonding and antibonding states of the π

bonds. Inspection of the band structure reveals that the conduction and valence band

meet at sharp points at each of the K and K′ vertices on the Brillouin zone boundary.
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Continuum Limit

If we zoom into the K point at − 4π
3
√

3a
x̂, we can linearize the spectrum to find

E± ≈ ±3ta
2

|δk| . (2.25)

With the Fermi velocity vF = 1
h̄

δE
δk = 3ta

2h̄ we find the important continuum limit for small

relative momenta:

E± ≈ ±h̄vFδk. (2.26)

We can also expand γk around the K point to find: γK+δk ≈ 3at
2

(
δkx − iδky

)
. Therefore,

the tight-binding Hamiltonian can be expressed as

ℋ ≈

 0 h̄vF(δkx − iδky)

h̄vF(δkx + iδky) 0

 = h̄vFδk · σ (2.27)

where the σi are the usual Pauli matrices:

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 . (2.28)

If instead we had expanded around the K′ point we would have found

ℋ ≈

 0 −h̄vF(δkx + iδky)

−h̄vF(δkx − iδky) 0

 = −h̄vFδk · σ*. (2.29)

If we were to swap the basis order in the K′ sector from
(

ψ
(A)
K′ , ψ

(B)
K′

)
to
(

ψ
(B)
K′ , ψ

(A)
K′

)
we

would have found the more aesthetically pleasing ℋ ≈ −h̄vFδk · σ. In fact, if we drop

the δ from δk, redefine k to be relative to the K or K′ point, and convert from crystal
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momentum to kinetic momentum p = h̄k, then the continuum model can be expressed as

ℋK(K′) = ±vFp · σ. (2.30)

Dirac Electrons

The confused reader might ask, “Why go through the trouble of changing basis, drop-

ping δ, and lumping constants?" The goal of this largely aesthetic exercise is to cast the

Hamiltonian around the K and K′ points in the form of the relativistic Hamiltonian first

proposed by Paul Dirac [34]. Additionally, this form makes a firm connection to the con-

cept of chirality which is borrowed from particle physics. The chirality operator η is given

by

η = p̂ · σ. (2.31)

In high energy physics, the Pauli matrices σi refer to the physical spin of a particle and η

measures its projection onto the direction of the kinetic momentum p. Of course, our use

of the Pauli matrices applies not to the physical spin of the electrons but to the graphene

sublattice basis (A, B). In our continuum expansion, the Pauli matrices appeared in a

somewhat sneaky fashion as a convenient way to express the (complex) distribution of

crystal momentum on each of the A and B sublattices. In this context, we can think

of the chirality operator η as projecting the sublattice amplitude onto a given electron

or hole’s crystal momentum. The operator η commutes with graphene’s tight-binding

Hamiltonian in the continuum limit because ℋ ∼ η, making chirality a good quantum

number. Electrons in graphene that are close to the K point are positive eigenstates (right-

handed) of the sublattice projection operator η, meaning that their relative phase on the

two sublattices acquires a well-defined value which rotates as we wind around the K

point. The same is true of the K′ point, except the electrons are left-handed with opposite
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phase relationship to their cousins across the Brillouin zone at the K point.

Because of the unique properties close to the K and K′ points where there is an analogy

to relativistic physics, electrons at low energy in graphene are referred to as relativistic or

Dirac electrons and the K and K′ points are referred to as Dirac points. The existence

of two species of electrons which reside at spatially separated locations in the Brillouin

zone (which are not related by reciprocal lattice vectors), each described by different good

quantum numbers (chirality), means we can simply keep track of the orbital physics as-

sociated with one valley and tack on an extra degeneracy factor of 2 (called the valley

degree of freedom) in addition to spin when accounting for the density of states. Many

of graphene’s special properties ultimately relate back to this unique, linear band struc-

ture at low energy. For example, the relative suppression of backscattering in graphene

(and other carbon electronics) as compared to other metals ultimately relates to the chi-

ral nature of the charge carriers [35]. When we discuss quantum Hall physics later in

section 2.5, we will discuss some additional consequences at high magnetic field.

It is important not to lose sight of graphene’s larger band structure away from the

Dirac points. Only at low energy and momenta close to the Dirac points is chirality a

well-defined quantum number. If we could go to higher energy where coupling between

K and K′ becomes larger, these arguments would break down. However, it turns out that

experimentally the accessible range of chemical potential in graphene is on the order of

a few hunder meV and the continuum limit is generally considered quite accurate up to

about 2 eV when including next-nearest neighbor and overlap corrections [32]. At suffi-

ciently high energy, on the order of t ≃ 3 eV, the Fermi surface is no longer concentrated

about the Dirac points but instead encircles the Γ point, at which point the Dirac nature

of our electrons is completely lost.

We have made use of several approximations in this section. We assumed no overlap

correction, only nearest neighbor interactions, and a linear expansion about the K and K′

points. It is worth asking if the essential features of graphene’s Dirac spectrum survive
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higher order hopping terms. While the linear approximation and particle-hole symmetry

break down upon additional hopping terms and higher order expansions about the Dirac

points, the contact point at K and K′ are protected by the inversion symmetry of the hon-

eycomb structure. This symmetry can be broken by considering honeycomb-structured

materials with different atomic species on each sublattice (like hexagonal boron nitride)

or with certain superlattice structures such as aligned monolayer graphene on hexagonal

boron nitride or twisted bilayer graphene. The latter case will be discussed in section 2.4

and Chapter 4.

2.3 Bernal-Stacked Bilayer Graphene

Bernal-stacked bilayer graphene is more complicated than monolayer graphene because

it has more than one strong hopping term arising from a combination of intra- and in-

terlayer tunnel coupling. In lieu of deriving the full tight-binding Hamiltonian, we will

make use the monolayer graphene tight-binding Hamiltonian as a starting point and sim-

ply expand the Hamiltonian to account for the increased complexity.

2.3.1 Crystal Structure

Bernal-stacked bilayer graphene consists of two monolayers of graphene on top of one

another as shown in Figure 2-6. Their lattices are staggered so that the A sublattice of the

top layer is over the B sublattice of the lower layer. This leaves the B sublattice of the

top and A sublattice of the bottom sitting in the middle of the honeycomb plaquettes of

the other layer. The tight-binding Hamiltonian will require a basis that takes into account

the sublattice and layer degrees of freedom. In Figure 2-6 the hopping parameters t0 and

t1 are shown. The term t0 is equivalent to the term t used in the monolayer graphene

case. It represents intralayer hopping on each of the two layers. The term t1 represents

hopping between the upper A sublattice and lower B sublattice. In principle, there are
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Figure 2-6: Bernal-stack bilayer graphene crystal structure (Left) Bernal-stacked bilayer
graphene consists of two monolayers of graphene stacked on top of one another and
staggered so that the A sublattice of the upper layer (darker colors) is located over the B
sublattice of the lower layer (lighter colors). (Right) The hopping term t0 is equivalent to
the hopping t used in monolayer graphene. It represents hopping within the same layer
to nearest neighbors. The term t1 represents hopping between the A sublattice of the top
layer and the B sublattice of the bottom layer which are directly on top of one another.

additional terms t3 and t4 which represent hopping from the A sublattice of the bottom

to the B sublattice of the top and hopping from the A(B) sublattice of the bottom to the

A(B) sublattice of the top, respectively. We will ignore these terms because they are small

in magnitude and will only affect the band structure at irrelevant energies scales.

2.3.2 Tight-Binding Hamiltonian

Let the bottom and top layers be indexed as 1 and 2, respectively. We use the basis

(A1, B1, A2, B2). The tight-binding Hamiltonian ℋ takes the form

ℋ =



∆
2 t0γk 0 0

t0γ*
k

∆
2 t1 0

0 t1 −∆
2 t0γk

0 0 t0γ*
k −∆

2


(2.32)
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where ∆ represents a layer asymmetry which may be induced by a vertical electric field

(or different substrates on either side). Note that the terms t0γk are equivalent to the case

of monolayer graphene because they only concern nearest neighbors within a layer. The

terms t1 do not have any associated phase because they represent hopping at the same

in-plane coordinates. Solving for the spectrum gives four separate bands which resemble

the general curvature and scale of monolayer graphene including the important band-

touching around the K and K′ points as shown in Figure 2-7.
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Figure 2-7: Bilayer graphene spectrum Plot along kx of the four bands derived from
the bilayer graphene tight-binding Hamiltonian at ky = 0 for ∆ = 0, t0 = 3 eV, and
t1 = 0.4 eV [13]

.

Continuum Limit

We can linearize the model around the K and K′ points as done previously for monolayer

graphene. We will use the expansion t0γk+δk ≈ h̄vF(δkx − iδky) = h̄vFδke−iθ where θ =
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tan−1(δky/δkx). The Hamiltonian becomes

ℋK+δk ≈



∆
2 h̄vFδke−iθ 0 0

h̄vFδkeiθ ∆
2 t1 0

0 t1 −∆
2 h̄vFδke−iθ

0 0 h̄vFδkeiθ −∆
2


. (2.33)

If we solve for the eigenvalues we find (switching δk → k for convenience)

E2
± = (h̄vFk)2 +

∆2

4
+

t2
1
2
±

√
(h̄vFk)2

(
∆2 + t2

1

)
+

t4
1
4

. (2.34)

Consider the case of no layer asymmetry: ∆ = 0. The four bands are plotted in Figure 2-
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Figure 2-8: Bilayer graphene in the continuum limit showing the four bands close to K
with no interlayer asymmetry (∆ = 0).

8. At high energies and momenta, the bands acquire the monolayer-graphene-like linear

dispersion characterized by vF. They separate into two sets which are displaced by the

hopping parameter t1. The two bands which are split by 2t1 at k = 0 are associated with

the strong vertical tunneling between sites A2 and B1 which form a dimer with a bonding
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and anti-bonding energy branch (±t1). The low energy bands that touch at k = 0 are

associated with a higher order tunneling process between sites A1 and B2, in which an

electron first tunnels from A1 to B1
(
t0γk = h̄vFke−iθ), from B1 to A2 (t1), and finally from

A2 to B2
(
t0γ*

k = h̄vFkeiθ) so that the energy of interaction EA1−B2 ∼ t1v2
Fk2 and we get a

quadratic dispersions (at small momentum). This is more explicit if we expand near the

K point where h̄vFk ≪ t1 in which:

E2
± ≈ (h̄vFk)2 +

t2
1
2
±

t2
1
2

(
1 +

2
t2
1
(h̄vFk)2 − 2

t4
1
(h̄vFk)4

)
. (2.35)

This yields the four equations to lowest order:

E(1)
± (k) = ± (h̄vFk)2

t1
(2.36)

E(2)
± (k) = ±

(
t1 +

(h̄vFk)2

t1

)
(2.37)

which look semiconductor-like with effective mass t1
2v2

F
. A gap in the lowest two energy

bands can be opened up with application of an electric field so that ∆ ̸= 0 which breaks

the sublattice symmetry protecting the Dirac point band contact as show in Figure 2-9

with ∆ = 0.5 eV.
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Figure 2-9: Bilayer graphene gapped by a layer asymmetry which breaks the sublattice
symmetry protection (∆ = 0.5 eV).

2.4 Twisted Bilayer Graphene

Twisted bilayer graphene consists of two monolayers of graphene that have been stacked

on top of one another and given a relative rotation, or twist, between the crystal axes

of each layer. Twisted bilayer graphene can be found by exfoliating bulk graphite, but

Bernal-stacked bilayer graphene is much more commonly found due to its more chem-

ically stable arrangement of carbon atoms as well as being the stacking order for bulk

graphite. Further, one typically wants a high degree of control over the twist angle as

well as the ability to fabricate samples with a reasonable throughput, requiring a more

directed approach than exfoliating and characterizing the stacking order of individual

flakes. Fortunately, recently developed layer-transfer techniques enable the consistent

fabrication of twisted bilayer graphene with ≃0.1∘ precision [36, 37].

2.4.1 Superlattice Structure

When two crystals of similar lattice constant are stacked on top of one another, an ad-

ditional periodic modulation emerges beyond the periodicity of the individual crystals.
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The new spatial modulation is often referred to as a moiré pattern.1 Due the rotational

misalignment (or different lattice constants), the local coordination of the atoms between

layers varies over a long length scale λ compared to the atomic spacing. Here, we will

only discuss the specific case of two monolayer graphene crystals with equal lattice con-

stants rotated with respect to one another. In this case, atoms from both layers smoothly

transition from AA sublattice coordination (in phase) in which the carbon atoms from

the A sublattice in each layer are directly on top of one another to AB and BA stacking

coordination (out of phase) in which the carbon atoms from the A and B sublattices are

aligned on each layer. The coordination or the ionic lattices creates an effective electronic

potential with the length scale λ. Although this interlayer potential is much weaker than

the effect of the ionic potential within each single layer, it is sufficient to cause twisted bi-

layer graphene to take on markedly different properties from both monolayer and Bernal-

stacked bilayer graphene.

Basic geometry reveals that the moiré wavelength is

λ =
a/2

sin(θ/2)
(2.38)

where a is graphene’s lattice constant ≃2.46 Å and not the carbon-carbon bond length as

used in the tight-binding section. The long wavelength spatial modulation is the two-

dimensional analog of a beat frequency resulting from the addition of two sinusoids of

different frequencies f1 and f2 such that they are close in value | f1 − f2| ≪ fi as plotted

in Figure 1-4. Figure 2-10 shows the moiré pattern for two monolayer graphene crystals

at a variety of twist angles. For the smallest twist angle shown, 4∘, the moiré wavelength

λ ≈ 35 Å. The twisted layers develop hexagonal plaquettes with unit cells of length

λ. These additional periodic features are referred to as a superlattice, in which we can

imagine the crystal being renormalized from scale a → a/2
sin(θ/2) . This would be a very

1Moiré comes from the French term for double-layer silks which have been pressed to form a rippled pat-
tern. The two silk layers have slightly different thread spacing arising from variations in the manufacturing
process that produces a rippling effect on a long length scale compared to the thread spacing.
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a) 4∘ b) 8∘

c) 15∘ d) 30∘

Figure 2-10: Moiré patterns with different twist angle a) θ = 4∘, the arrow indicates the
moiré wavelength λ. b) 8∘ c) 15∘ d) 30∘
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complicated crystal to describe precisely—its unit cell would consist of approximately

(λ/a)2 ∼ 200 graphene unit cells, making the type of analytical tight-binding model we

considered previously unfeasible even if we only took into account the simplest nearest-

neighbor hopping terms. Fortunately, there are advanced computational packages as well

as simplifications that make band structure calculations tractable which will be discussed

shortly. For the largest angle shown, 30∘ in panel d, the wavelength λ ≈ 5 Å is on the or-

der of the graphene latice constant. The periodic potential is much less dramatic and en-

compasses only about four graphene unit cells. In this limit, the superlattice only weakly

competes with the monolayer graphene lattices of the constituent layers.

It turns out that not all rotation angles produce precise translational and rotational

symmetry [38]. At an arbitrary twist angle we are not guaranteed to find primitive trans-

lation vectors that define the allowed symmetries of the superlattice. For these rotations,

crystal momentum is not well defined and calculations that rely on Bloch waves become

challenging. However, as discussed in subsection 2.4.3, at small twist angle, one can of-

ten find a true commensurate crystal at a rotation angle very close to an incommensurate

one, allowing many of the essential physical properties of incommensurate crystals to be

extrapolated from nearby commensurate orientations. Although the commensuration of

the two crystals rapidly varies with arbitrarily small deviations in θ, physical properties

should not change if one moves infinitesimally away from a particular commensurate an-

gle. Additionally, at low twist angles one can develop a continuum model to study the

low energy properties without regard to the commensuration of the superlattice [16].

2.4.2 Electronic Structure

Because there are two graphene layers, it may seem that Bernal-stacked bilayer graphene

is the logical starting point for describing the band structure of twisted bilayer graphene.

It turns out that decoupled monolayer graphene is a more useful point of departure for

the range of twist angles we will be considering (& 1∘). To see this, consider starting
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Figure 2-11: Twisted bilayer experiences degeneracies at positive and negative energies
from each set of adjacent Dirac cones. Two crystals with a twist angle of 10∘ are shown.
Here we consider the Dirac points at K and Kθ. The cones are displaced by ∆K and the
degeneracies occur at E± = ±h̄vF∆K/2.

with a larger twist angle θ, perhaps around 10∘ as shown in Figure 2-11. To zeroth order,

we can consider the two monolayers to be fully decoupled. The two Brillouin zones of

the monolayers will also be rotated by θ relative to each other like the real space lattices.

The two Dirac cones near the K points are displaced by ∆K = 2K sin(θ/2) ≃ Kθ. The

pair of conduction and valence bands will intersect at ±∆K/2 at energies given by E± =

h̄vFKθ/2 as plotted on the right in Figure 2-11. For the commonly used value of vF ≃

106 m/s [32] and K ≃ 1010 m−1, the degeneracy points are separated by ∆E ≈ 1 eV.

This energy difference is extremely large compared to the range of Fermi energy typically

accessed in experiments and we are justified in treating the Dirac cones in neighboring

layers as decoupled.

At what rotation angle does this break down? The degeneracy at the Dirac points

is protected by the inversion symmetry of the monolayer graphene, however, the de-

generacies at E± are incidental degeneracies arising from the rotation angle and are not

generally protected. Therefore, any interlayer coupling will have a tendency to gap out

these degeneracies and modify the band structure in the process. If this interlayer cou-

pling strength is small in comparison to E±, then this will only have a weak, perturbative

effect on the low energy physics. In Bernal-stacked bilayer graphene we saw that the low
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energy bands were displaced by the dimerization hopping energy t1 which we have pre-

viously approximated as t1 ≃ 0.4 meV [13]. Without considering additional complexity,

let us use t1 as the interaction energy scale. By setting the interaction energy scale equal to

the degeneracy energy difference ∆E we can solve for the θ at which competition between

these energy scales becomes significant:

0.4 meV ≃ t1 ∼ ∆E = h̄vFKθ. (2.39)

These energy scales are roughly equal around θ ∼ 3∘. This crude estimate, which does

not consider the specific form of interlayer hopping, agrees well with computational band

structure calculations for low-angle twisted bilayer graphene that find an approximately

monolayer, Dirac-like spectrum above ∼2∘ [16, 39, 40]. Below this cutoff the twisted

bilayer graphene spectrum is highly exotic and deviates in significant ways from both

Bernal-stacked and large-angle twisted bilayer graphene.

Moiré Potential

At small twist angles, the Dirac cones are separated by small momenta and experience

potentially large hybridization. One way of viewing this interlayer coupling is through

Bragg scattering off of the superlattice cells. In an atomic lattice (non-superlattice), Bragg

reflection of plane wave states occurs at the zone boundaries and high symmetry points

of the Brillouin zone [20]. These scattering processes are responsible for generating stand-

ing waves at restricted momenta. In one dimension, with an ionic interaction of the form

U(x) = U0 cos(2πx/a), these standing waves produce two solutions eikx ± e−ikx which

either enhance or diminish the electron density over the positive ion cores, leading to

an increase (U0) or decrease (−U0) in kinetic energy and a band gap of 2U0. In a su-

perlattice, the moiré pattern can be said to produce a moiré potential which generates

coupling at the renormalized high symmetry points due to the superlattice of the form
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W(r) = ∑n wne−iGn·r which will open up gaps of the form 2wn at high symmetry points

of the superlattice where |Gn| ∼ n
λ .

Before discussing more advanced theoretical approaches, we can develop a simple

model that accounts for some interlayer hybridization energy scale w related to interlayer

tunneling t1 which we will not specify in detail. In general, if we consider two linear

bands which are degenerate at k = k0 and energy E0, the interaction w will open up an

avoided-crossing. If there are no other energy bands nearby (and no symmetries which

protect the degeneracy), we can consider the local two-band Hamiltonian in the basis

(ψ1, ψ2) where ψ1 and ψ2 are the Bloch states for the lower and upper bands. Let the

lower band ψ1 have the form E1(k) = E0 − α|k − k0| and the upper band have E2(k) =

E0 + α|k − k0|. In the absence of interactions the Hamiltonian is simply given by

ℋ0(k) =

E0 − α|k − k0| 0

0 E0 + α|k − k0|

 . (2.40)

If we introduce the interaction energy w ≡ ⟨ψ1|δℋ|ψ2⟩, the off-diagonal matrix elements

are modified and the total Hamiltonian ℋ = ℋ0 + δℋ becomes

ℋ(k) =

E0 − α|k − k0| w

w E0 + α|k − k0|

 . (2.41)

We can solve for the new eigenspectrum to find

E±(k) = E0 ±
√

α2(k − k0)2 + w2 (2.42)

where at k = k0 the two eigenstates are made up of symmetric and antisymmetric combi-

nations of the original Bloch states ψ1 ± ψ2. The modified bands close to k0 are shown in

Figure 2-12 (blue traces).

Utilizing this basic model, we can plot the band structure for two Dirac cones with

62



0

1

2

0.5 1 1.5

En
er

gy
(E

0)

k (k0)

Figure 2-12: Avoided crossing resulting from the interaction w ≃ 0.14αk0. The original
band structure (black traces) has a degeneracy at k = k0 which is lifted by the interaction
w to form an avoided crossing (blue traces).

fixed separation ∆K and vary the interaction strength w to consider its influence. As w

becomes large w ∼ ∆E, the interlayer hybridization is no longer a simple perturbation

and should be accounted for by a proper treatment of the Hamiltonian. Additionally, the

Dirac cones become displaced and ultimately merge when w = ∆E which is not allowed

without breaking additional symmetries. Despite these limitations, Figure 2-13 serves to

illustrate the role that interlayer coupling w plays in the twisted bilayer band structure.

At w ≪ vF∆K, it perturbatively decreases the dispersion between the two Dirac cones,

slightly modifying the Fermi velocity. At w ∼ ∆E, the conduction and valence bands

between the Dirac cones merge towards one another, strongly suppressing the Fermi ve-

locity.
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Figure 2-13: The twisted bilayer dispersion flattens as w is increased from 0.1∆E (blue
traces) to 0.9∆E (red traces). The original uncoupled Dirac cones (black traces) are
strongly modified even at low energy for sufficiently strong coupling.

2.4.3 Review of Single-Particle Band Structure Calculations

In the previous subsection, we applied very crude estimates and overextended perturba-

tive approaches to gain insight into the qualitative behavior of twisted bilayer graphene.

We were limited by both the relative complexity of the twisted bilayer graphene unit

cell, containing potentially thousands of carbon atoms at small twist angles, as well as

the fact that not all rotation angles result in commensurate superlattice cells with true

translational and rotational symmetry, making tight-binding approaches difficult. Here,

we will review some of the early computational and analytical work which placed the

concepts previously alluded to on firmer footing (e.g. the renormalization of the Fermi

velocity and the flattening of the low energy bands). More recent calculations and experi-

ments have revealed significant differences from these early theoretical works and there is

presently no widespread theoretical consensus on the correct approach to calculating the

band structure. Nonetheless, there is insight to be gained from some of the early models.

Early ab inito density functional theory calculations focused on calculating the band

structure for a few specific commensurate rotations [41, 42] at relatively large twist an-
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gle. At the time of these calculations, unanticipated monolayer-graphene-like behavior

in multilayer graphene grown on SiC [43] was not well understood. The observation of

rotational misalignment of the top layer and accompanying calculations [41] helped to

emphasize the degree to which a twisted sheet of graphene can decouple from its neigh-

boring layers.

A later tight-binding analysis [39] that considered multiple commensurate rotations

down to small twist angles of ∼3∘ derived a continuum model for large twist angles in

the limit of weak interplane coupling that showed a general trend in the renormalization

of the Fermi velocity of the form

v?

vF
= 1 − 9

(
t1/3
vF∆K

)2

∝ 1 − 1
θ2 . (2.43)

This formula is only applicable at large twist angle θ & 10∘ where the coupling t1 can

be considered perturbative. The authors of reference [39] were able to reduce the com-

plexity of the calculation by Fourier expanding the interlayer hopping parameter t(r) in

units of the reciprocal lattice and considering the dominant terms. In previous calcula-

tions we have simply treated ti as a constant and restricted its application to a particular

hopping distance and orientation (intraplane or interplane hopping to neareast neigh-

bors). Here, we allow it to take on a continuous range because the task of computing

nearest-neighbor hopping for each atom within the moiré site is not defined by a constant

interaction distance. Each atom in general experiences a slightly different nearest inter-

plane neighbor due to the complex registration of atoms between each layer within the

moiré cell. An important point is that interlayer tunneling of this form requires travers-

ing a transverse distance δ(r) as well as the perpendicular interlayer distance (the van

der Waals layer separation) d⊥ ≃ 3.35 Å. Because d⊥ is larger than the typical near-

est neighbor transverse distance δ(r) ∼ 1 − 2 Å, the hopping function t(r), which de-

cays exponentially with the interatomic distance, is dominated by length scales .d⊥ and
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falls off rapidly at larger values. Taking its Fourier expansion, t̃(G) =
∫

d2rt(r)e−iG·r,

the dominant components in momentum will have values G . 2π
d⊥

≈ 2.7
a where a is the

carbon-carbon bond length. In particular, the smallest reciprocal lattice vectors have the

magnitude |G| = K = 4π
3
√

3a
≈ 2.42

a which satisfy the condition G . 2.7
a . Additional recip-

rocal lattice vectors of larger magnitude, such as 8π
3
√

3a
≃ 4.84

a will have Fourier coefficients

significantly smaller by at least a factor of 5 or more [39]. In contrast, a typical tight bind-

ing hopping parameter t(r) for a monolayer crystal with no interplane coupling will have

a typical length scale shorter than the atomic spacing a and its Fourier expansion will in

turn be more spread out in momentum space than the case of twisted bilayer graphene (in

general, greater localization in real space leads to greater extent in momentum space). Its

expansion cannot be truncated at the smallest reciprocal lattice vectors unlike the unique

case of interlayer tunneling.

In order to visualize the meaning of t̃(G) being dominated by the smallest reciprocal

lattice vectors, we can consider the mini-Brillouin zone. Just as the crystal lattice becomes

renormalized a → a/2
sin(θ/2) = λ, the Brillouin zone of the atomic lattice is renormalized to

a miniature momentum space of order λ−1. The hexagonal mini-Brillouin zone emerges

from the corners of the original rotated Dirac cones as shown in Figure 2-14. Momentum

coupling q1 = ∆K between the Ks and K′
s superlattice points hybridizes the two Dirac

cones as shown with the green arrow on the right hexagonal zone. Additionally, the re-

ciprocal lattice vectors of the original blue Brillouin zone link the equivalent Ks points

on the other two crystallographically equivalent vertices. Momentum coupling from q2

and q3 of the same magnitude as q1, but with different orientation, also contributes to

hybridization. For an electron of momentum k near the Ks point close to zero energy,

hybridization strongly couples it to three electrons of momenta k + qi near the K′
s point.

These coupled electron are at significantly different energy, vF∆K. This is in stark contrast

to the case of Bernal-stacked bilayer graphene which we can imagine as two uncoupled

monolayers at a rotation angle of θ = 0. Here, at electron near the K point with momen-
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tum k is strongly coupled to another electron with very similar momentum and energy.

This strong coupling in Bernal-stacked bilayer graphene is responsible for altering the

band structure from linear behavior to quadratic at low momentum. In twisted bilayer,

because the coupled electrons are at such different energies, the linear band structure

is not strongly modified until small twist angle at which the energy difference between

coupled electrons is of the same order as the hybridization strength.

q3

q2

q1Γ
θ
K

Kθ

K′
θ

K′

Γs

K′
s

Ks

Figure 2-14: The miniature Brillouin zone of twisted bilayer graphene is constructed
from the vector ∆K = K − Kθ. The miniature zone contains Dirac points Ks and K′

s.
Momentum coupling q1 between the Dirac points is indicated by the vertical green arrow
on the right. By applying the reciprocal lattice vectors of the original blue Dirac cone,
additional momentum coupling between the two other equivalent sites is shown with
the additional green arrows. In principle, larger reciprocal lattice vectors can couple Ks
and K′

s at additional momenta qi but these additional momenta are found to be negligible
[39].

Magic Angles

The main result of reference [39], the reduction of the Fermi velocity as twist angle de-

creases, stimulated other researchers to develop additional ab initio and tight-binding ap-
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proaches for commensurate structures. References [44] and [40] both made the key obser-

vation that along with a small Fermi velocity, the entire bandwidth of the the valence and

conduction band becomes very confined at small twist angle, with reference [44] observ-

ing strongly localized wave functions at small twist angle and reference [40] identifying

non-monotonic behavior of the bandwidth at low twist angle, in contrast to the monotonic

trend of the Fermi velocity at large twist angle from reference [39] v?
vF

= 1− 9
(

t1/3
vF∆K

)2
. The

low energy bandwidth was found to reach a minimum at a critical angle θc ≈ 1.5∘.

These insights set the stage for the more complete continuum model developed in

reference [16] that was derived for all twist angles regardless of commensuration below

about 10∘ and allowed for a continuous exploration of the band structure as a function

of θ. The tight binding model was very similar to the one derived by reference [39] in

which only the dominant Fourier components were retained. The key observation is that

hopping at small values of momentum is locally periodic, allowing the construction of

Bloch waves at all rotation angles. In qualitative agreement with reference [40], reference

[16] calculated extremely confined low energy bands (< 10 meV separation) for a small

twist angle of 1.05∘ where the Fermi velocity reaches exactly zero. Surprisingly, the au-

thors observed that the Fermi velocity also vanishes for a large series of angles beneath

the critical angle of 1.05∘ as θ → 0 as plotted in Figure 2-15. Lacking an analytical way

to understand the emergence of this set of special angles, the authors referred to them

collectively as the magic angles, a term that has proved enduring and come to signify

any twisted bilayer graphene structure at small twist angle around 1.05∘ that exhibits the

effects of strong bandwidth confinement. The next few magic angles in reference [16] are

θ ≈ 0.5∘, 0.35∘, 0.24∘, and 0.2∘. The existence of (approximately) flat bands has been con-

firmed experimentally for θ ∼ 1∘ [17, 45], although, there is currently no experimental

evidence for the existence of subsequent magic angles below ∼1∘.

This will conclude the discussion of the single-particle band structure of twisted bi-

layer graphene, but it is worth mentioning that recent experiments [17, 18] have indicated
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Figure 2-15: Renormalized Fermi velocity as a function of twist angle adapted from ref-
erence [16]. The angle θ is expressed in terms of α = w/h̄vF∆K. The renormalized Fermi
velocity vanishes at the magic angles θ ≈ 1.05∘, 0.5∘, 0.35∘, 0.24∘, and 0.2∘.

that twisted bilayer graphene near the magic angle may host very exotic physics (Mott-

like insulation and potentially unconventional superconductivity) arising from electron–

electron interactions that go beyond the relatively simple single-particle calculations dis-

cussed so far. In order to understand these unconventional phases of twisted bilayer

graphene, there has been renewed focus on calculating the single-particle band struc-

ture. Reference [17] utilized localized Wannier orbitals to calculate the single-particle

band structure, however, recent theoretical works (e.g. references [46] and [47] among

dozens) have called into question many of the calculations of the low twist angle band

structure on the grounds that previous tight-binding and Wannier orbital approaches do

not respect basic symmetries of the twisted bilayer graphene electronic system, preclud-

ing their accurate use in predicting the low energy physics. Even questions as to the

correct tight-binding unit cell remain up for debate. Chapter 4 contains a longer discus-

sion of current experimental results and will present capacitance measurements that shed

light on recent theoretical proposals for the band structure as well as the nature of the

exotic insulating phases.
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2.4.4 Interaction Physics

The previous subsection placed large emphasis on the relative flatness of the low energy

bands and the suppression of the Fermi velocity at that superlattice Ks points in the mini-

Brillouin zone. The reader may wonder why flat energy bands are worth the numerous

calculations and theoretical focus. In many materials such as conventional insulators,

metals, or semiconductors away from the band edge, the interactions between electrons

are very weak. This may seem counter-intuitive—a metal consists of a huge density of

free electrons forming a Fermi sea that permeates the crystal lattice. It would seem that

under such high charge densities the electrons would be strongly interacting with one an-

other as compared to a dilute electronic system where electrons are spaced farther apart.

The resolution of this puzzle is electronic screening. Just as a metal Faraday cage is ca-

pable of shielding its interior from an external electric field, the dense fluid of electrons

surrounding any one electron shields it from the strong electric fields of the others further

away. The Thomas–Fermi screening length for a metal is given by

1
k0

=

√
2ε0EF

3e2n
. (2.44)

For a material such as gold with n ∼ 5 eV and n ∼ 1028 m−3 this gives a screening length

of about 1 Å. Thus, the large number of free electrons effectively shields each electron

from the electric potential created by all of the other electrons. This means Coulomb

repulsion between electrons is a negligible effect.

Strong screening, as in the case of a metal, simplifies band structure calculations con-

siderably because we do not have to keep track of electron–electron interactions for Avo-

gadro’s number of electrons. We are able to compute the band structure as if only the

electronic kinetic energy mattered, which was done in the tight-binding approach in sub-

section 2.2.3. In general, we can rephrase this discussion in terms of the competition

between kinetic and potential energy. In a parabolic energy band the kinetic energy is
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given by

T =
h̄2k2

2m
(2.45)

and the potential energy by

V =
e2

r
(2.46)

we can make the substitution r ∼ 1
k ∼ n−1/3 to say that

V
T

=
e2

n−1/3
2m

h̄2n2/3
=

2me2n−1/3

h̄2 . (2.47)

Recall that the band mass for a parabolic system is given by

m =
h̄2

∂2E/∂k2 . (2.48)

If we identify ∂2E/∂k2 as the curvature of the band structure at the Fermi level, then

our relationship tells us generically that interactions between electrons are strongest for

flat energy bands with small dispersion. In the limit that the energy bands are flat, we

expect strongly correlated physics to play a potentially pronounced role in stabilizing

the ground state of the electronic system. There are many examples of flat electronic

bands hosting strongly interacting physics. The application of a strong magnetic field to

a two-dimensional electronic system leads to the formation of Landau levels that are very

flat in momentum space. Landau levels are known to host phases such as the fractional

quantum Hall effect [48–50], quantum Hall ferromagnetism [51, 52], and Wigner crystals

[53, 54]. One advantage of studying interaction physics with twisted bilayer graphene

is that the band structure’s relative flatness can be tuned by careful stacking and relative

rotation, offering a highly controllable platform for novel ground states.
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2.5 Graphene in Strong Magnetic Field

2.5.1 Non-Relativistic Electrons

At high magnetic field, the previous tight-binding models no longer apply. The atomic

lattice, which was the very starting point for the hopping picture we developed, turns

out be negligible for the case of monolayer graphene. This is due to the fact that the

typical length scale of the wave functions at high magnetic field scales as lB =
√

h̄
eB ≃

26 nm/B[T] ≫ a. Instead of adopting a lattice picture, we can simply solve the Hamilto-

nian of a free electron in magnetic field. The momentum p which entered the Schrödinger

equation ℋ0 must be modified to its gauge-invariant form p → Π = p + eA. For non-

relativistic electrons, the Schrödinger equation now reads:

ℋ =
1

2m
Π2 =

1
2m

(p + eA)2 (2.49)

where m is the band mass. If one uses the fact that [x, px] = ih̄ and ∇× A = B, it can be

shown that Πx and Πy obey:

[
Πx, Πy

]
= −ieh̄B = −i

h̄2

l2
B

. (2.50)

Due to the fact that the lB√
h̄
Πi satisfy canonical quantization and appear in quadrature

in ℋ0 like the simple harmonic oscillator, the problem can be solved easily using ladder

operators:

a =
lB√
2h̄

(
Πx − iΠy

)
(2.51)

a† =
lB√
2h̄

(
Πx + iΠy

)
. (2.52)
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Therefore

ℋ = h̄ωc

(
a†a +

1
2

)
(2.53)

and the spectrum takes the simple form En = h̄ωc

(
n + 1

2

)
. These states are indexed for

n = 0, 1, 2, . . . and disperse linearly with magnetic field B.

2.5.2 Relativistic Electrons

For the case of Dirac electrons, we need the continuum approximation we derived earlier

in Equation 2.27. Expanding around the K point we have:

ℋ =

 0 vF(px − ipy)

vF(px + ipy) 0

 . (2.54)

Using the same substitutions pi → Πi we find:

ℋ = h̄ωc

 0 a

a† 0

 (2.55)

where we will redefine ωc ≡
√

2vF/lB. Substituting a general eigenstate ψi =

(
ui vi

)T

and solving for the spectrum yields the equations

h̄ωcavi = Eiui (2.56)

h̄ωca†ui = Eivi (2.57)

⇒ (h̄ωc)
2 a†avi = E2

i vi. (2.58)
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Exploiting the fact that oscillator states |n⟩ satisfy a†a|n⟩ = n|n⟩ we get

E±n = ±h̄ωc

√
|n|. (2.59)

We thus have states indexed for n = 0,±1,±2, . . . which disperse with
√

B in contrast to

the non-relativistic case. Plots of the spectra for the non-relativistic and relativistic cases

are shown in Figure 2-16.
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Figure 2-16: The Landau level spectrum is plotted for a) non-relativistic electrons using
the conduction band mass of GaAs 0.067me [20] and b) relativistic electrons using the
Fermi velocity 106 m s−1 [32].

2.5.3 Landau Fan Diagrams

For measurement techniques such as transport or capacitance, the Landau level spec-

trum is not directly accessed in excitation energy as displayed in Figure 2-16, but rather,

properties of the Fermi level are monitored as either charge density is modulated or mag-

netic field modulates the Landau quantization energy. Despite naïvely expecting features

which disperse with
√

B for graphene, quantum Hall features take on linear trajectories
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in magnetic field–gate voltage sweeps.2 This is due to the fact that the movement of the

chemical potential is sensitive to the carrier capacity of each Landau level which supports

a universal number of orbital states independent of the host material. We can derive this

result by considering the dependence of various integer filling factors (gapped phases)

ν on the gate voltage and magnetic field. The filling factor is defined as the ratio of the

number of electrons to the number of flux quanta:

ν =
Nel

Nφ0

=
nA

BA/φ0
=

φ0n
B

(2.60)

and it is clear that ν depends linearly on the ratio B
n . We can convert to gate voltage via:

n =
∫ V

0

CT

Ae
dV′ (2.61)

where we integrate the total capacitance (including the quantum capacitance, see Chap-

ter 3) across the gate voltage V which corresponds to the carrier density n. In the limit

that CT can be approximated by the geometric capacitance CT ≈ Cgeo, we find

n ≈
CgeoV

Ae
. (2.62)

Then we can say

ν =
φ0Cgeo

Ae
V
B

. (2.63)

Therefore, as we add carriers to the system by changing V, the magnetic field at which

the chemical potential lies in a gap at integer filling ν changes an amount proportional to

the change in V. The final result is that the incompressible gapped phases of the quantum

2There are small deviations from linearity due to quantum capacitance contributions which reduce the
rate at which charge enters the sample as a result of gating (see Chapter 3), however, most samples are
dominated by the geometric capacitance to the nearby metallic gate. Then, quantum capacitance contribu-
tions can be safely ignored, resulting in essentially linear trajectories. Additionally, converting from gate
voltage to carrier density results in exactly linear dependence in magnetic field–carrier density.
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Hall regime take on linear trajectories labeled by integer ν. This result is independent of

the host material due to the fact that all Landau levels hold a universal charge density. Al-

though, it is worth mentioning that the specific integers ν at which cyclotron gaps occur

depend on the non-orbital degeneracy factors like spin and valley. In graphene without

additional symmetry-breaking terms (e.g. exchange gaps, see Chapter 4), the four-fold

degeneracy of spin and valley generates cyclotron gaps at ν = ±2,±6,±10, . . . whereas

in GaAs the cyclotron gaps occur at ν = 2, 4, 6, . . . due to the two-fold spin degeneracy.

While the presence of the zero-energy Landau level in graphene (between ν = ±2) is a

unique property of the linear band dispersion close to E = 0, it is worth mentioning that

GaAs (and other semiconductors) host similar hole-type Landau levels with cyclotron

gaps corresponding to ν = −2,−4,−6, . . . associated with the valence band. Unlike

graphene, in which these two sets of Landau levels are accessible with an experimentally

realizable range of gating, the two sets of Landau levels in GaAs are not typically acces-

sible simultaneously due to the large band gap separating them which would require a

prohibitively large gate voltage. Even if both sets of Landau levels were accessible, GaAs

would lack a Landau level at E = 0 like graphene despite cyclotron gaps occurring at

ν = ±2 in both systems.
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Figure 2-17: Schematic showing monolayer graphene Landau fan as a function of mag-
netic field B and gate voltage V under the approximation that the gate voltage is linearly
proportional to carrier density. Trajectories of the cyclotron gaps at ν = ±2,±6,±10, . . .
are shown in red.
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Chapter 3

Compressibility and Capacitance

Measurements

3.1 Thermodynamic Relations

The field of thermodynamics is concerned with measuring equilibrium properties of large

ensembles of particles. Here, we will be concerned with measuring the ground state of

a large number of electrons by accessing their compressibility, a fundamental thermody-

namic quantity which can be related directly to the free energy of the electronic system.

Before discussing the electronic compressibility, it is useful to describe the more familiar

mechanical compressibility

κ = − 1
V

(
∂V
∂p

)
T,N

(3.1)

which measures the relative change of an object’s volume V in response to an applied

pressure p while the temperature T and particle number N are fixed. (Here, V is used for

full generality but may be replaced by the area for a two-dimensional system). An object

which is easily deformed, such as a rubber ball, is characterized by a large compressibility

whereas a rigid object, such as a tungsten rod, has a very small compressibility as shown
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in the cartoon in Figure 3-1. The mechanical compressibility can be converted into an

electronic compressibility with a few thermodynamic relationships. The Gibbs–Duhem

equation constrains changes in the intensive variables µ, T, and p:

Ndµ = Vdp − SdT. (3.2)

For constant temperature we can say

(
∂µ

∂p

)
T
=

V
N

⇒
(

∂µ

∂(V/N)

)
T
=

V
N

(
∂p

∂(V/N)

)
T

. (3.3)

Each side of the equation involves a derivative with respect to the reduced volume V/N.

We are free to differentiate with either N or V held constant without affecting the rela-

tionship in Equation 3.3 [55]. We choose to hold V constant on the left to find

(
∂µ

∂(V/N)

)
T,V

=

(
∂µ

∂N

)
T,V

(
∂N

∂(V/N)

)
T,V

= −N2

V

(
∂µ

∂N

)
T,V

. (3.4)

For the derivative on the right of Equation 3.3, we hold N constant to find

V
N

(
∂p

∂(V/N)

)
T,N

=
V
N

(
∂p
∂V

)
T,N

(
∂V

∂(V/N)

)
T,N

= V
(

∂p
∂V

)
T,N

. (3.5)

Putting everything together yields

1
κ
= −V

(
∂p
∂V

)
T,N

=
N2

V

(
∂µ

∂N

)
T,V

. (3.6)

In contrast to measuring relative changes in volume with respect to pressure, the elec-

tronic compressibility considers changes in the total particle number in response to

changes in the chemical potential as shown in panels c and d of Figure 3-1. For an

electronic system, this often amounts to asking the question: “How much charge enters a

system if we increase its Fermi level slightly?”

80



a)

b)

c)

d)

Figure 3-1: Comparison of mechanical and electronic compressibility a) A rubber ten-
nis ball is highly mechanically compressible, deforming readily with a relatively small
applied pressure. b) A rod of tungsten has low mechanical compressibility. c) When
the chemical potential is in the middle of an energy band, raising the chemical potential
δµ admits a relatively large number of additional carriers δn. It is highly electronically
compressible. d) When the chemical potential is in a gap, raising the chemical potential
δµ admits no additional electrons δn = 0. It has low electronic compressibility (highly
incompressible).
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It is worth emphasizing that κ, like heat capacity or magnetization, is considered a

thermodynamic quantity because it can be related to a derivative of a thermodynamic

potential. In this case, the Helmholtz free energy F is the appropriate potential for a

constant temperature and volume:

F = U − TS (3.7)

⇒ dF = TdS − pdV + µdN − TdS − SdT (3.8)

= −SdT − pdV + µdN (3.9)

where we have used the first law of thermodynamics dU = TdS − pdV + µdN. We can

identify the chemical potential with

µ =

(
∂F
∂N

)
T,V

(3.10)

which implies

1
κ
=

N2

V

(
∂2F
∂N2

)
T,V

. (3.11)

In the context of solid state physics, κ is more conveniently expressed in terms of µ and

electron density n = N
V :

κ =
1
n2

(
∂n
∂µ

)
T,V

. (3.12)

Moreover, the prefactor is often dropped and the compressibility becomes synonymous

with the thermodynamic density of states:

κ ∝
∂n
∂µ

. (3.13)

We will frequently refer directly to ∂n
∂µ as the compressibility and often we will use the
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terms compressible or incompressible to signify an electronic phase which has a relatively

large or small thermodynamic density of states, respectively.

3.2 Thermodynamic Density of States

Along with the band structure, the thermodynamic density of states is one of the most

fundamental quantities describing an electronic system. For example, the existence of

gaps in the density of states and their relation to the chemical potential determine if a

material is electrically insulating or conducting. The thermodynamic density of states

measures the shift in the chemical potential upon adding additional electrons. If electron–

electron interactions can be ignored, this quantity is intuitively related to the number of

available electronic states at the Fermi level. As we add charge, Pauli exclusion forces

us to add electrons only to the unoccupied states immediately above the Fermi level. If

the system has a large degeneracy at the Fermi level, perhaps in a metal or the middle

of a Landau level, then electrons can occupy states which are very close in energy to µ.

Then, the change δµ upon adding δn electrons is very small making the compressibility

κ ∝ ∂n/∂µ very large. On the other hand, if the Fermi energy is in the middle of a band

gap, such as in the case of a band insulator, the Fermi level is forced to rise rapidly in

order to access available states. In this situation the shift δµ after adding δn electrons is

large and κ ∝ ∂n/∂µ is very small.

3.2.1 Comparison to Single-Particle Density of States

The thermodynamic density of states must be contrasted with the single-particle density

of states. The thermodynamic density of states asks: “How much energy δµ does it cost

to add δn electrons after waiting for the system to relax and return to equilibrium?” The

key point is that the electrons are being added in the adiabatic limit, permitting the rest of

the electrons already present to rearrange in order to find a new ground state. The single-
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particle density of states asks: “If I suddenly add an electron of energy ∆E = E− EF away

from the Fermi level, how many available electronic states exist at ∆E?” The system is not

allowed to relax. The capacitance measurements in Chapter 4 will relate to the slow,

equilibrium charging of electronic systems characterized by the thermodynamic density

of states. The electron tunneling measurements in Chapter 6 will describe the sudden

electron addition related to the single-particle density of states.

a) b)

En
er

gy

k DOS

En
er

gy

k DOS

Figure 3-2: Density of states without electron–electron interactions In the absence of
interactions, a) placing the Fermi level at E0 and measuring the spectral (single-particle)
density of states at E0 + E1 is equivalent to b) measuring the thermodynamic density of
states while the Fermi level is at E0 + E1.

In the absence of electron–electron interactions, the two quantities can be easily related

to one another. Imagine we perform a tunneling measurement where we fix the Fermi

level at E0 and tunnel up in energy to the unoccupied states at E = E0 + E1, measuring the

density of states g(E0 + E1) as shown in panel a of Figure 3-2. If we were to then move the

chemical potential from E0 → E0 + E1, and measure the thermodynamic density of states

∂n/∂µ as shown in panel b, the two quantities would be equivalent. The equivalence is

made possible by the assumption that the band structure remains constant as we tune the

electron density.
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When electron–electron interactions are present, the situation is more complicated. As

discussed in subsection 2.4.4, Coulomb interactions between electrons are often highly de-

pendent on the electron density and curvature ∂2E
∂k2 of the band structure. As a result, the

relative importance of electron–electron interactions may change as one tunes the carrier

density. We no longer have a static band structure which can simply be filled or depleted

of electrons. The band structure becomes dynamic and electron–electron interactions can

strongly modify both the Fermi level physics and to a lesser extent, the physics of the

excitation spectrum at energies far from the Fermi level. Here, it is not possible to equate

∂n/∂µ with the number of available energy levels. In this situation of course, ∂n/∂µ

still rigorously defines the energy cost of adding charge, but its connection to the single-

particle density of states breaks down. Figure 3-3 demonstrates this effect schematically

by considering a spectral measurement that accesses an electron at an energy away from

the Fermi level which lies in a band gap in panel a. Generally, electron–electron inter-

actions are negligible if a band is completely empty, as there is no charge available to

experience a Coulomb force. And if we consider a fully occupied band as behaving like a

completely empty hole energy band, then the same analysis applies. When energy bands

are partially filled, if non-orbital degrees of freedom are available such as spin or valley,

the orbital degrees of freedom may find it energetically favorable to rearrange their en-

ergy hierarchy in order to minimize Coulomb repulsion, as in the case of a quantum Hall

ferromagnet. This situation is generically shown in panel b where a gap at the Fermi level

opens up when at partial-filling of the conduction band. This gap differs from the band

gap, which arises from electron–ion interaction and is a single-particle effect.
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Figure 3-3: Density of states with electron–electron interactions Electron–electron inter-
actions modify the band structure as the chemical potential shifts. In a), placing the Fermi
level within a band gap and exciting to the middle of the empty conduction band reveals
a predictable parabolic dispersion. In b), a many-body energy gap may be opened up
around the Fermi level while it is at a particular location due to density-dependent inter-
actions. The thermodynamic density is significantly reduced due to the presence of an
energy gap at the Fermi level.
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3.3 Capacitance

3.3.1 Metallic Electrodes

It turns out that the capacitance between a two-dimensional material and a nearby metal-

lic electrode is intimately related to the electronic compressibility. Before discussing the

capacitance between objects with finite density of states, this subsection will review the

capacitance between two pieces of metal.

Any two pieces of metal have a mutual capacitance which defines their propensity

to accumulate charge in response to an applied voltage difference Q = CV where Q,

taken to be positive, is the net excess accumulated charge on one of the capacitor plates,

V is the voltage applied across the structure, and C is the mutual capacitance coefficient.

The linear charge–voltage relationship ultimately relates back to superposition. If build-

ing up charge Q0 induces a voltage V0 between two metal objects, then by doubling the

charge density to 2Q0, we must also find 2V0 in response. The capacitance is entirely de-

termined by the geometric distribution and orientation of the two pieces of metal as well

as the dielectric environment. The geometric dependence arises from the inverse-square

Coulomb force and the ability of metals to create a perfect equipotential on their surface

due to the large density of mobile charge. Free electrons on the surface of a metal will

easily spread out to null any voltage difference which builds up along the tangential di-

rection of the surface. After reaching equilibrium, it will turn out that sharp and highly

confined regions attract a higher proportion of the total charge density due to the spatial

confinement from the rest of the electron sea that these regions confer. These confined

regions build up a larger, costly electric field density as a result, causing the geometry to

play the key role in determining the ultimate charge capacity.

It is worth stressing that the internal electronic structure of the metal is irrelevant.

When capacitors are described in classical electrostatics, the particular metallic material—

gold, brass, aluminum, etc. are not typically specified. This (very good) approximation,
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is due to the fact that the densities of states of metals are effectively infinite. What does

effectively mean here? Consider two pieces of gold forming a parallel plate capacitor in

vacuum

C =
εA
d

(3.14)

where ε is the vacuum permittivity, A the lateral area, and d the plate separation. As

we apply a voltage δV across the capacitor, the charge δQ = CδV accumulates. The

charge accumulates across the lateral area as well as a depth of approximately a few Fermi

wavelengths λ ∼ n−1/3 where n is the total electron density. For gold (a few) λ ∼ 1 nm.

The induced carrier density is then

δn =
δQ

eλA
=

CδV
eλA

=
εδV/d

eλ
. (3.15)

The density of states can be approximate by

∂n
∂µ

∼ n
EF

∼ 1028 eV−1 m−3 (3.16)

where EF is the Fermi energy of gold. We are free to vary the separation d. We can consider

an extreme limit by letting d = 1 nm, then this yields

δµ

eδV
=

∂µ

∂n
δn

eδV
=

∂µ

∂n
ε/d
e2λ

∼ 5 × 10−3. (3.17)

For every volt we apply across the capacitor, the chemical potential only rises by a few

meV which constitutes a change of a few parts in a thousand of the Fermi energy of

gold. This is a negligible change, and importantly, the value of the compressibility in

gold will be virtually unchanged as the chemical potential moves by minuscule amounts,

ensuring that any shift in the expected charging rate of the capacitor due to chemical
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potential drift is constant over any reasonably accessible voltage range. Furthermore, the

value of d = 1 nm is unphysical for most situations—electron tunneling and then vacuum

breakdown would occur at relatively small voltage ranges (<1 V), effectively shunting the

capacitor. If we had used a more reasonable 10 nm the effects described above would have

been proportionally weaker.

3.3.2 Quantum Capacitance

The preceding analysis suggests a useful way of thinking about capacitance. Whenever

a voltage is applied across a capacitor, it supplies a certain amount of energy which can

do work on the system. The voltage can transfer charge density in order to set up an

electric field, but in so doing, it must spend some of its energy allotment on changing the

Fermi level in the plates. For materials such as metals which have a very large density of

states, the quantum mechanical cost to increase or decrease the Fermi level is very small

in comparison to the purely electrostatic cost of charging. However, in many materials,

the density of states can be quite small in relation to the ease of charging, making the

chemical potential shift significant upon applying voltage. Even if the shift in chemical

potential remains a small perturbation on the roughly linear charging rate, the chemical

potential shift will be strongly dependent on the gate and magnetic field, making ob-

servation of relative changes in the compressibility viable. As will be clear below, this

chemical potential shift manifests as a contribution to the capacitance signal which can be

measured and related to the compressibility of the electronic system.

Let us take a parallel plate capacitor with one ideal metallic plate with an infinite

density of states and the other plate made from monolayer graphene as shown in panel a

of Figure 3-4, however, it could be any other electronic system with finite density of states.

We ground the graphene through an ohmic contact at the boundary and apply a voltage

δV to the metal plate which creates a total electrochemical difference of eδV across the

capacitor as shown in panel c. If we imagine taking a test charge −e and moving it from
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a) b) c)

δV

δV = 0 δV > 0

eδV
δµ

eδφ

Figure 3-4: Quantum capacitance schematic a) A layer of monolayer graphene (gray)
is separated by and insulator (pink) from a metal gate (gold). A voltage δV is applied
between the gate and an ohmic contact to the graphene. b) If δV = 0, the gate and
graphene are in electrochemical equilibrium (we assume no work function difference).
c) If δV > 0, the gate and graphene acquire an electrochemical difference of δV. The
gate is brought below a ground reference by an amount eδV. This is composed of two
contributions: the electrostatic potential eφ and the change in chemical potential δµ where
µ is referenced from the charge neutrality point.

ground through the voltage source, across the geometric capacitance, raise the chemical

potential of the material by δµ, and exit back to ground through the ohmic contact, we

will have completed a full loop with no net work. Recording the energy at each section

we find

0 = −eδV + eδφ + δµ (3.18)

where δφ is the change to the electrostatic potential of the graphene due to its accumulated

charge and geometric capacitance δQ
Cgeo

. We can think of this equation as describing the

energy cost associated with charging the graphene with δQ. We must pay the potential

energy cost eδφ as well as the quantum kinetic energy cost within the material δµ. We can

reorganize this to show

∂µ

∂V
= e

(
1 − 1

Cgeo

∂Q
∂V

)
. (3.19)
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Previously we have defined capacitance in terms of the ratio of charge to voltage C = Q
V ,

however, for our purposes it makes sense to define a differential capacitance CT = ∂Q
∂V in

terms of the total charge modulated as a function of the voltage V. We can expand this

CT =
∂Q
∂V

=
∂Q
∂µ

∂µ

∂V
. (3.20)

In an effort to connect with the compressibility ∂n
∂µ we can convert from charge units to

density: δQ = eAδn where A is the lateral area of the capacitor. With the help of Equation

3.19 the total capacitance can be expressed as

CT = e2A
∂n
∂µ

(
1 − CT

Cgeo

)
. (3.21)

We can solve for CT to find

1
CT

=
1

Cgeo
+

1
Ae2∂n/∂µ

(3.22)

≡ 1
Cgeo

+
1

Cq
(3.23)

where we have defined the term directly proportional to the compressibility Ae2∂n/∂µ as

the quantum capacitance [11]. Although this term has been expressed as a capacitance, it is

important to remember that it arises merely from conservation of energy and the closed

equipotential paths of the circuit. The fact that the geometric and quantum capacitances

add in reciprocal tells us that the quantum capacitance acts like a fictitious capacitance

that is in series with an ideal geometric capacitance. This term obviously plays a large

role in any direct measurement of the total capacitance of a system with finite density of

states, however, it is always present whenever a two-dimensional system is gated. Even

in transport measurements where the capacitance is not measured, the charge density of a

two-dimensional structure is modulated by the field effect, and the quantum capacitance

affects the rate at which an applied gate voltage adds charge to the system. Typically
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experimentalists make the approximation eA∆n = Cgeo∆V which is only ever approxi-

mately true. Whenever a parallel-plate capacitor is gated, the relationship

1
CT

=
∂V
∂Q

=
1

Cgeo
+

1
Ae2∂n/∂µ

=
1

Cgeo
+

1
Cq

(3.24)

holds. In the example above, we considered a metal gate and graphene where ∂n/∂µ

referred to graphene’s thermodynamic density of states in order to emphasize the role of

quantum capacitance in a material with small density of states. However, this relationship

is entirely general and we could have swapped out the graphene for another metal. In

this situation, ∂n/∂µ ≫ Cgeo/Ae2 for typical values of Cgeo so that

1
CT

≈ 1
Cgeo

. (3.25)

Lurking beneath many of these approximations and assumptions about the size of the

compressibility of metals is the implicit assumption that the typical area-normalized geo-

metric capacitance Cgeo/A ≪ e2Cq. Whether or not a two-dimensional system will have a

large (irrelevant) quantum capacitance is only defined in relation to the other capacitance

scale in the system, Cgeo. It is easy to construct a metal–graphene parallel plate capacitor

so that the ratio Cgeo
CT

is arbitrarily close to 1 by adjusting the ratio ε/d. We can explicitly

calculate the ratio for parallel plate capacitance:

Cgeo

CT
= 1 +

Cgeo

Cq
= 1 +

ε

de2∂n/∂µ
. (3.26)

The area has dropped out since it is both proportional to the geometric capacitance as

well as the total charge which is brought into the material as a result of eA (∂n/∂µ) δµ.

However, the length scale d plays a large role through the ratio ε/d. If we increase the

geometric capacitance through adjusting ε or d, then eventually Cgeo ∼ Cq and both will

be strong contributions to CT as shown in Figure 3-5.
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Figure 3-5: The relative importance of the quantum capacitance scales with the ge-
ometric parameters εr/d. Here, the area-normalized quantum capacitance of gold
∼1600 fF µm−2 is plotted along with the area-normalized geometric and total capaci-
tances as a function of εr/d, the ratio of the relative permittivity and dielectric thickness
in inverse nanometers.
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Circuit Perspective of Quantum Capacitance

a)

b)

δV

δV

Cgeo Cq

δµ/e

Figure 3-6: Representation of quantum capacitance in a circuit a) A piece of metal (gold)
separated from graphene (gray) by a dielectric (pink) creates a parallel-plate capacitor.
b) The parallel-plate geometry can be decomposed into two contributions: the geomet-
ric capacitance and the quantum capacitance. The chemical potential chang δµ can be
represented as a voltage δµ/e between the geometric and quantum capacitances.

Equation 3.22 encourages treating the quantum capacitance as a genuine circuit ele-

ment. We can think of any single parallel plate structure as consisting of a geometric and

quantum capacitance contribution as shown in Figure 3-6. The task of computing the

chemical potential change in response to an applied voltage reduces to solving a basic

capacitive voltage divider:

δµ/e
δV

=
Cgeo

Cgeo + Cq
(3.27)

= 1 − CT

Cgeo
. (3.28)

If Cq → ∞ (as in a perfect metal), δµ → 0 as expected. Equation 3.28 is particularly useful.

The gate-dependent (and possibly complicated) quantum capacitance does not need to be

measured directly in order to compute changes in the chemical potential.
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The (Electro)-Chemical Potential: A Tedious Digression

In subsection 3.3.2 we have used the term µ to define the chemical potential of the elec-

tronic system. In the fields of condensed matter physics, semiconductor physics, and

electrochemistry there are several different definitions of chemical potential. In this the-

sis, we will always refer to µ as the energy of the highest occupied electron (or appropriate

location within an energy gap so that µ is the 50% electron occupation probability accord-

ing to the Fermi–Dirac distribution) which is frequently defined with respect to a band

minimum (in the case of a semiconductor) or charge neutrality point (in Dirac-like sys-

tems). It will not mean the electrochemical potential which will be specified by µe-ch to

avoid confusion. At zero temperature, µ is equivalent to the Fermi level EF relative to

the band minimum or charge neutrality point. Because the measurements described in

Chapter 4 occur at low temperature, we will interchangeably use µ and EF.

In section 3.1 we discussed the concept of electronic compressibility from a careful

set of thermodynamic relationship. In an effort to avoid any confusion, care should be

taken to distinguish the thermodynamic equilibrium of the full capacitor system which

yielded eδV = eδφ + δµ and the sense in which ∂n/∂µ is an equilibrium thermodynamic

property. The proper choice of chemical potential for the full capacitor structure which

satisfies the first law of thermodynamics, dF = µdN at constant temperature and vol-

ume, is the electrochemical potential µe-ch. If the circuit were not at electrochemical equi-

librium, then the voltage source and potentials would redistribute electrons to make it

so. In the previous treatment, the difference of the electrochemical potential of the metal

and graphene was given by the external voltage δµe-ch, graphene − δµe-ch, metal = eδV =

eδφ + δµ. We assume that the electrochemical potential of the metal is fixed at ground.

Then, ∂n/∂µe-ch, graphene ∝ ∂n/∂V ∝ CT which is not equivalent to the compressibility

∂n/∂µ which is defined with respect to the chemical potential. The resolution lies in re-

alizing that the definition of the compressibility ∂n/∂µ as a thermodynamic quantity as-

sumes the electronic system is isolated from any external potentials. In this case µ = µe-ch
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is the the amount the internal energy is raised by adding one electron. We can use a ca-

pacitor structure that is in electrochemical equilibrium with an external voltage source

to access the compressibility ∂n/∂µ which is a thermodynamic quantity of the isolated

two-dimensional system.

3.4 Measurements Scheme

The task of accessing the compressibility can be boiled down to measuring the capaci-

tance CT and using the established relationships to extract Cq which is defined by the

compressibility. It turns out that measuring the capacitance to the resolution required in

this thesis is no simple task. Fortunately, there are a set of established techniques for mea-

suring high-resolution capacitance signals at cryogenic temperatures [56] which we will

now review.

3.4.1 Limitations of Basic Transport-Style Scheme

The simplest approach to measuring a device with an unknown impedance Z is to simply

source a voltage across it and measure the current I running through it as done in typical

electron transport. Using Ohm’s law V = IZ, the impedance can be simply related. First,

let us imagine Z ≈ R (any capacitive or inductive terms are small). If we decide to place

the device in a cryostat, we will need some long cabling which will add line resistance.

Additionally, there may be significant contact resistance where ohmic contacts connect

with van der Waals or semiconductor materials at low temperature. These parasitic resis-

tances can be lumped together as a term Rpar for each line. We assume the measurements

are carried out at DC or very slow AC excitations V so that rotations arising from the

capacitance of the measurement lines to ground can be neglected. The total impedance
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inferred from a two-terminal measurement will be

Z = R + 2Rpar. (3.29)

Typically the 2Rpar term is a simple additive contribution which shifts the baseline. Im-

portantly, the parasitic elements add to the sample impedance in series, often only slightly

modifying the signal which is measured at room temperature in a two-probe geometry.

If precision is required, such as measuring the zero-resistance state of a superconductor,

a four-probe geometry can be employed in which the current is sourced along two lines

which incur a voltage drop from the contact resistance, and the voltage difference across

the sample can be probed with separate contacts. In the laboratory, this only costs the

experimenter an additional voltmeter at room temperature. The cryogenic portion of the

circuit can remain identical with the exception of requiring four ohmic contacts instead of

two.

a)

b)
V

V
Rpar RparR

C

I

I

Figure 3-7: Transport-style measurement scheme a) An impedance Z = R is sourced
with voltage V and its current is measured with an ammeter. Parasitic resistances arising
from the lines and contacts Rpar are easy to deal with in a laboratory setting. b) The
equivalent measurement scheme for a capacitor is challenging due to the inability of most
ammeters to operator above about 10 kHz, limiting currents to about 1 pA for a sample
on the order of 1 pF or less.

The situation is very different if Z ≈ 1
iωC . For starters, Z is infinite in the DC limit,

requiring the use of an AC technique. In the same vein, the frequency of the measurement

ought to be reasonably high or else the current output I ∝ ω will be prohibitively small

in comparison to noise. However, most current amplifiers experience significant input
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impedance above about 10 kHz, limiting measurable currents to the picoampere range

for a 1 mV source voltage and samples on the order of 1 pF or less.

3.4.2 Capacitance Bridge

Vstd

Vex

Cstd

Cex

Cpar

δVbal

Figure 3-8: The basic capacitance bridge scheme uses two voltage sources to balance
an unknown experimental capacitance Cex against a known standard Cstd. The voltage
Vex is fixed to some excitation amplitude and frequency appropriate for the sample. The
standard excitation is 180∘ out of phase and adjusted in amplitude only (though if there is
resistive impedance present the phase must also be adjusted slightly). The output signal
δVbal is measured at the balance point of the bridge with a shunting capacitance Cpar
arising from cabling, bond pads, wire bonds, etc.

A major improvement is to employ a capacitance bridge which allows two voltage

sources to balance an unknown capacitance against a known reference capacitor. When

the output voltage at the balance point is nulled, the relationship between the sources

and capacitances can be used to extract a value for Cex. We will first describe a very basic

version which only balances two ideal capacitances. We will then add the complication of

resistive impedance. The basic scheme is depicted in Figure 3-8. The voltage source Vex is

fixed at a given frequency and amplitude and applied to Cex, the experimental capacitance

which is unknown. A separate voltage Vstd which has variable amplitude and phase is

applied to Cstd, a standard capacitor of known value. Vstd is approximately 180∘ out of

phase with Vex when balanced. In the basic scheme considered here, because we are

balancing two pure capacitance, we never need to adjust the phase away from 180∘ but

the phase degree of freedom will be used when we consider an experimental impedance
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Zex which includes a resistive component. In practice, the two voltage sources are set to

some initial value, the output of the bridge δVbal is measured at the balance point, and Vstd

is adjusted until δVbal = 0. The shunt capacitance arising from cabling reduces the signal

output and limits the resolution of the bridge. The output at the balance is computed by

superposition of two capacitive voltage dividers:

δVbal = Vex
Cex

Cex + Cstd + Cpar
+ Vstd

Cstd

Cex + Cstd + Cpar
(3.30)

=
VexCex + VstdCstd

CΣ
(3.31)

where CΣ = Cex + Cstd + Cpar. Balance is achieved when

Cex

Cstd
= −Vstd

Vex
. (3.32)

The ratio of the source voltages −Vstd
Vex

gives the experimental capacitance in units of the

standard capacitance. This formula makes it clear that the size of δVbal is divided by the

total capacitance CΣ ≈ Cpar for large parasitic capacitance. For sufficiently large para-

sitics, it may be difficult to find an accurate bridge balance because even when relatively

far from optimally balanced, the charge imbalance term VexCex + VstdCstd will be sup-

pressed by CΣ, and the balance will not be sensitive above noise.

In typical measurements, finding an ideal balance at each point in phase space is time-

consuming. If changes in the total capacitance remain small, we typically perform an

initial balance to remove a large background capacitance and then measure off balance

to detect small relative changes in Cex which arise from gating, changing magnetic field,

etc. If we find an ideal balance, we can then ask: What voltage accumulates at the balance

point if Cex → Cex + δC? To leading order

δVbal ≈
δCVex

CΣ
. (3.33)
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Here, again, the shunting capacitance divides the signal. Thus, good capacitance sensing

is synonymous with reducing the shunt capacitance Cpar in front of the amplifier. For

standard coaxial cabling, the capacitance per unit length from core to shield (ground) is

30 pF ft−1. For a cryogenic measurement, long cables must reach all the way into the frige

and then back out for measurement at room temperature. The cabling between balance

point and measurement will be on the order of 10− 20 ft creating around 500 pF of shunt.

In the best case scenario, the signal will experience no noise beyond the intrinsic noise

floor of the lock-in amplifier δVn ∼ 5 nV/
√

Hz. With a 1 mV source we are limited to a

capacitance sensitivity of about

δCn ∼ δVnCΣ

Vex
∼ 1 fF/

√
Hz. (3.34)

Typical noise floors experienced with cryogenic bridge circuits are more like 50 nV/
√

Hz

at the input of the lock-in, and below .10 kHz the noise is typically much worse aris-

ing from 1/ f –noise in the cryogenic amplifiers. 1 fF/
√

Hz is a pretty disappointing fig-

ure. For comparison, the total capacitance CT after background subtraction of the devices

measured in Chapter 4 are around 20 fF and the most important features in the data cor-

respond to a capacitance changes of about 50 aF. In principle, long averaging times can

overcome some of these issues, as done in one study on carbon nanotubes for a limited

range of carrier density at zero magnetic field [57]. But if one attempts to sweep two

parameters such as carrier density as well as magnetic field and take fine point-spacing,

long averaging times become unfeasible, particularly in the low frequency limit where

1/ f –noise is worse. Furthermore, very low-frequency noise and DC drift may be difficult

to average away, even with very long averaging times.

The major limitation of capacitance sensing in a cryogenic environment is the need for

long cabling. It is difficult to get around this limitation whenever the primary stage of the

measurement circuit is placed at room temperature since the capacitance balance point
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must begin inside an isolated cryogenic space on one plate of the nanoscale capacitor.

The obvious solution is to place the first stage amplifier in the cryogenic space as close

to the sample capacitor as possible. This effectively decouples the balance point from

the rest of the measurement line downstream by presenting a large impedance. The idea

can be traced back to the work of Ashoori et al. [56] who first utilized a high electron

mobility transistor (HEMT) as a first stage “bridge on chip” amplifier at low temperature

as shown in Figure 3-9. The HEMT transistor is often set to an operating point with unit

or even subunit voltage gain. The HEMT’s small loss at this operating point is more than

made up for by acting as an impedance bridge which can reduce the shunt capacitance

by a factor of around 1000 from ∼500 pF to less than 1 pF. This reduction in the shunt

capacitance increases our capacitance sensitivity to around δCn ∼ 1 aF/
√

Hz under ideal

noise conditions. Additionally, two new circuit elements appear in the schematic. The

resistor Rbias and the DC voltage Vbias are used to set the DC operating point of the HEMT.

Rdrain and Vdd set the HEMT drain-source voltage and current. Modulation in the gate

voltage manifests as a change in the voltage across the HEMT which can be inferred at

room temperature. Because the HEMT has a low ∼500 Ω output impedance, the large

capacitive cabling going to room temperature presents no issue.

Further details of the cryogenic bridge amplifiers scheme can be found in Appendix B.

For the rest of this section, we will assume we have some low-temperature bridge similar

to Figure 3-9 which is capable of measuring capacitance with high resolution. We will

not specify the exact value of the shunt or the amplification downstream of the balance

point as these do not affect the interpretation of the measurement signal, only the ability

to measure. In the following subsections, we will discuss the output of the bridge and

its relationship to the capacitive and resistive impedances of real capacitance devices. At

the end of the chapter, we will relate the bridge output signal to real physical quantities

of interest such as compressibility, chemical potential, in-plane conductivity, and carrier

density as well as discuss data processing techniques.
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Vstd

Vex

Cstd

Cex

Cpar

δVbal

Rbias

Vbias
Rdrain

Vdrain

HEMT

Figure 3-9: The capacitance bridge with HEMT amplifier is very similar to the original
bridge but the room temperature measurement has been preempted by a low temperature
high electron mobility transistor (HEMT) which isolates the balance point from the long
cabling going to room temperature. The new value of Cpar < 1 pF.

3.4.3 In- and Out-of-Phase Signals

Impedance of van der Waals Capacitors

In the previous derivations, we have made use of the approximation that Zex ≈ 1
iωCex

, al-

lowing us to more easily compute the balance condition without phase rotations because

both sides of the bridge only presented reactive impedances. However, in typical van

der Waals systems at low temperature and high magnetic field, the in-plane resistance

can be significant. In fact, interpretation of capacitance data in terms of compressibility

rests crucially on the ability to measure effectively low in-plane resistance in relation to

the size of the capacitive impedance. We need a realistic, but hopefully simple, model for

the impedance of ohmically contacted van der Waals capacitors (with one plate made of

metal). To leading order, this can be well captured by a resistance R in series with the

capacitance CT (which includes both the geometric and quantum capacitances). Addi-

tionally, there is a stray background capacitance Cback which arises from capacitive cou-

pling between the bond pads, wire bonds, and additional metal connected to ether side

of the capacitance structure. This manifests as a constant addition to the total capaci-

tance in measurement Cmeas = CT + Cback and is effectively removed at the initial balance

point. However, it is important to accurately subtract this contribution when quantita-
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tively analyzing capacitance data. Accurate background subtraction will be discussed in

subsection 3.4.5.

Before proceeding with a circuit analysis, we should mention some alternative mod-

els for the sample impedance. In reality, the in-plane resistance and capacitance form a

distributed RC network instead of the lumped element model we have adopted. The dis-

tributed model changes the quantitative shape of some of the frequency response curves

discussed below, but the qualitative behavior is no different. In particular, at low fre-

quency both models converge. (See Appendix E of Gary Steele’s thesis for details [58].)

Additionally, we could worry about a leakage resistance Rdielectric which would manifest

as a parallel resistance to the sample capacitance CT, but in practice this is so large that it

is effectively infinite and ignored.

Balanced Measurements

Vstd

Vex

Cstd

Cex

Cpar

δVbal

Cback

R

Figure 3-10: An effective model for the sample impedance consists of an in-plane re-
sistance R in series with the total capacitance CT. Additionally, stray capacitance Cback
from coupling between bond pads, wire bonds, etc. adds a constant background on the
measurement signal.

Figure 3-10 shows the effective measurement circuit we wish to analyze. First, we

will find the balance condition and then calculate the off-balance signal to leading order

in response to small changes in CT and R. The total sample impedance Zex is given by
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summing the three impedances:

Zex =
1 + iωRCT

iω(Cback + CT)− ω2CbackCTR
. (3.35)

Similarly, the impedances of the standard capacitor and parasitic capacitance are

Zstd =
1

iωCstd
(3.36)

and

Zpar =
1

iωCpar
. (3.37)

If the amplifier at the balance point has a total amplification G, then the output voltage is

given by superposition:

Vbal = GVex
ZstdZpar/(Zstd + Zpar)

Zex + ZstdZpar/(Zstd + Zpar)
+ GVstd

ZexZpar/(Zex + Zpar)

Zstd + ZexZpar/(Zex + Zpar)
(3.38)

=
GZpar(VexZstd + VstdZex)

Zpar(Zex + Zstd) + ZexZstd
. (3.39)

The balance condition is achieved when

0 = Vbal ⇒
Zstd

Zex
= −Vstd

Vex
. (3.40)

In the limit Cback → 0 and R → 0 this reduces to Equation 3.32. Because Zex contains

both reactive and resistive impedances, the voltage Vstd must acquire a nonzero phase.

We can solve for the real and imaginary parts of Vstd/Vex which we will label X and Y,
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respectively:

X = − (CT + Cback)/Cstd

1 + (ωRCT)2 − Cback(ωCTR)2/Cstd

1 + (ωRCT)2 (3.41)

Y =
C2

TRω/Cstd

1 + (ωRCT)2 . (3.42)

Let us consider the low frequency limit defined by ωRCT ≪ 1. We can expand to leading

order in powers of ωτ where τ = RCT:

X = −CT + Cback

Cstd

(
1 − (ωτ)2

)
+𝒪 (ωτ)3 (3.43)

Y =
CTωτ

Cstd

(
1 − (ωτ)2

)
+𝒪(ωτ)4 (3.44)

The physical interpretation of these expressions is quite clear. At low frequency, the re-

sistance R does not compete with the impedance 1
iωCT

and so it is negligible. The in-

phase component is simply the total capacitive term in Zex in units of the standard ca-

pacitor. It may be counter-intuitive that the in-phase signal mostly describes the capac-

itive impedance. This true because in the low frequency limit (where R is negligible)

the balance point forms a capacitive voltage divider, resulting in no net phase shift with

respect to the excitation. Additionally, if we were to use a resistive impedance as Zstd,

then this would effectively change the “units” with which we measure impedance and

would cause the capacitance to manifest in the out-of-phase component. Importantly, if

we imagine varying CT we can see that the background capacitance simply manifests as

a constant additive term. The out-of-phase component is slightly more complicated as

it contains both reactive and resistive components. It is directly proportional to the in-

plane resistance of the sample, so it effectively tracks the bulk transport behavior of the

sample (though in units and a geometry that generally do not allow direct access to any

well-defined resistivity elements such as ρxx or ρxy). After discussing the high frequency

limit, we will return to the out-of-phase component to discuss its physical interpretation
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as well as its crucial role in capacitance experiments.

Now let us consider the high frequency limit. At high frequency ωRCT ≫ 1 and

X ≈ −Cback

Cstd
− (CT + Cback)/Cstd

(ωRCT)2 (3.45)

Y ≈ 1
CstdRω

. (3.46)

The capacitance of the sample needs a time of several τ = RCT in order to completely

charge. In the high frequency limit, the sample fails to charge completely and the sample’s

series resistance and capacitance are shunted by the background capacitance Cback. Turn-

ing to the out-of-phase component, there are no additional resistive components which

are not suppressed at high frequency by the failure of the sample to charge. As a result, Y

falls off uniformly as 1
ωRCT

, which can be viewed as the bulk conductivity 1
R measured in

units of ωCstd.

At intermediate frequencies, we can interpolate the two limits. The behavior of −X

is fairly straightforward. The contribution to the charging signal at the balance from the

sample is slowly killed by the sample failing to charge as frequency increases. It mono-

tonically decreases from a value of CT + Cback to Cback in units of the standard. The full

expression for Y in Equation 3.44 is not simply intuited; a possibly useful heuristic is that

Y represents the unitless competition between resistive and reactive impedances. Compe-

tition is high whenever the two impedances are comparable and suppressed whenever

one dominates. At extremely low frequency, the impedance of the capacitance is much

larger and dominates. Y ≈ 0 and increases linearly with ωτ. At very high frequencies, the

resistive component dominates and Y ≈ 0 due to the sample’s failure to charge and falls

off as 1
ωτ . At some intermediate regime, the out-of-phase signal peaks when R ∼ 1

ωCT
.

The out-of-phase signal can be cast in more illuminating form by taking the ratio of

Y to −X (after removing the background term in X). By doing so, the denominators in

Equations 3.41–3.42 vanish. It turns out that the background subtracted ratio is equal
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to the loss tangent tan(δ) of the sample, which is defined as the ratio of the resistive to

reactive impedances

tan(δ) = loss tangent =
Zres

Zreact
. (3.47)

The loss tangent is a quantity that is typically used to describe a capacitor’s deviation from

an ideal capacitance. All capacitances present a series resistance arising from parasitic

resistances and lossy relaxation of the dielectric. The numerator of the loss tangent is

equivalent to a capacitor’s effective series resistance (commonly ESR in data sheets). In

order to calculate this quantity for the sample Zex we must first background subtract the

Cback contribution. One way of doing this is to measure −X at both the low and high

frequency limit. Their difference is CT/Cstd. This is not always possible. Sometimes

the rolloff frequency is so high that it is impossible to reach the high frequency limit.

Another approach is discussed in subsection 3.4.5. Let X′ = X − Xback be the background

subtracted in-phase component (Xback = limω→∞ X). The loss tangent is given by:

loss tangent =
Y

−X′ = ωRCT. (3.48)

For moderately incompressible phases, often the value of the capacitance does not change

as dramatically as the resistance. In such cases, changes in the loss tangent correspond to

changes in the bulk resistance of the sample. However, strongly incompressible phases

will send CT → 0 and the loss tangent will vanish.

The values of −X, Y, and the loss tangent are plotted on on a logarithmic frequency

scale in Figure 3-11. The in-phase component (red) is proportional to CT at low frequency

and shows a clear drop at the rolloff frequency f = 2πRCT. The out-of-phase compo-

nent (blue) shows a clear peak at the rolloff frequency. The loss tangent (black, dashed)

increases linearly with frequency. In the low frequency limit, Y ≈ loss tangent.
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Figure 3-11: In-phase, out-of-phase, and loss tangent are plotted as a function of fre-
quency. The background capacitance has been set to zero. CT = Cstd = 100 pF and
R = 100 kΩ. The in-phase component (red) falls to 0 monotonically. The out-of-phase
component (blue) displays a peak when the resistive and reactive components are com-
parable. The loss tangent (black, dashed) is linearly increasing in frequency.
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Off-Balance Measurements

In order to measure capacitances with a bridge scheme, feedback software can tune the

magnitude and phase of Vstd in order to find the condition Vbal = 0. Using the in- and

out-of-phase components of Vstd, the ratio Vstd
Vex

gave Equations 3.41–3.42. However, the

bridge must be rebalanced at at each gate voltage, magnetic field, or other independent

parameter. This leads to long measurement times when, often, the total changes to the

capacitance that we are interested in are quite small. In this regime, it is possible to use a

linearized off-balance signal to back out the relative changes δX and δY.

We can find an initial balance for some arrangement of independent variables such as

carrier density and magnetic field using Equation 3.39. Then, we can ask: What voltage

accumulates at the balance point in response to changes CT → CT + δC and R → R + δR

from sweeping one of the independent parameters? Let our amplifier have a total gain

of G. Take V0
std to be the original balance voltage for δC = 0 and δR = 0. Expanding

Equation 3.39 to linear order in δC and δR we get:

δV =
GVex(δC − iδRωC2

T)

(1 + iωτ)(CΣ + i(CΣ − CT)ωτ)
. (3.49)

Here, CΣ = CT + Cback + Cstd + Cpar. This expression can be cleaned up significantly

with one other measurement. While the bridge is balanced, δC = 0 and δR = 0, we can

intentionally put the bridge out of balance by letting V0
std → V0

std + δVstd. The output of

the bridge will be

α ≡ δVbal

δVstd
=

GCstd(1 + iωτ)

CΣ + i(CΣ − CT)ωτ
(3.50)

where we have defined the bridge response function α. If we multiply Equation 3.49 by 1
α
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then we find

δV
αVex

=
δC − iδRC2

Tω

Cstd(1 − iωτ)2 . (3.51)

Isolating the in- and out-of-phase components we get in the low-frequency limit:

(
δV

αVex

)
X
=

δC
Cstd

(3.52)

(
δV

αVex

)
Y
= −

(
δR
R CT + 2δC

)
ωτ

Cstd
. (3.53)

The first expression matches −X in the balanced case with Cex → δC and no background

capacitance. The second expression matches −Y with R → δR in the limit that the first

term in the numerator proportional to δR dominates. Note that the ratio between the

two expressions is proportional to the fractional change: (δR/R)/(δC/CT). Typically

decreases in capacitance are associated with increases in the resistance. The change in

total capacitance is typically the smaller of the two due to the fact that the total capacitance

is typically dominated by the geometric term. The decrease in the total capacitance may

also be relatively weak if there is a large number of localized states within a gap which

prevent the quantum capacitance from decreasing to zero. The resistance, however, is

very sensitive to the number of available extended states and will potentially increase

much more dramatically whenever a gap is entered. In either case, the role of the Y-

component is never quantitative but only to verify that changes in the X-component are

associated with legitimate changes in the quantum capacitance δCq and not with increases

in R associated with the denominator of Equation 3.51. The X-component, which is often

used quantitatively, remains well approximated as purely capacitive in the low-frequency

limit.

The issue of whether the capacitance is a genuine measure of the density of states

in light of the potential importance of the in-plane conductivity was first addressed in
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reference [59]. Though the authors deserve credit for realizing the role of transport in

their data, they arrive at the incorrect conclusion that the extraction of density of state

is generally impossible due to the intermixing of transport features. In their particular

Corbino geometry, they were able to exactly access the conductivity tensor σij to study the

in-plane transport. The authors failed to consider that the loss tangent is a good indicator

of the relative importance of the in-plane transport. If we restrict to the low frequency

limit, as verified on the Y channel, the in-phase component is purely capacitive allowing

access to the quantum capacitance and thermodynamic density of states.

In practice, the value of R is never known exactly and so the low frequency limit is

taken to be whenever the off-balance Y term remains zero or changes only very slightly

while a substantial change in X occurs. In this situation, the modulation of X may be at-

tributed to the quantum capacitance (density of states). If Y changes substantially, which

typically occurs in substantial band gaps and at high magnetic field in the quantum Hall

regime where the in-plane conductivity can become very low in cyclotron or exchange

gaps, then it is difficult if not impossible to be quantitative about the changes in com-

pressibility. However, this does not preclude the X component from being an effective

qualitative tool for exploring compressibility. For example, in the quantum Hall regime,

the emergence of exchange gaps at high magnetic field may be clearly seen in both the

X and Y channels. Although the magnitude of the gap will be impossible to disentangle

from the intertwined transport contribution to the signal, the presence and trajectory of

the exchange gap are potentially important observations. The only danger with this type

of qualitative analysis is the possibility that resistance increases are associated with local-

ized states and not a true density of states reduction, which is why this type of analysis

should be limited to well-understood incompressible phases such as those in the quantum

Hall regime.

In this way, capacitance can be separated into roughly two limits. At low frequency,

changes in X are attributed to changes in Cq ∝ ∂n/∂µ. At high frequency, X is no longer
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directly proportional to the compressibility. In this limit, both the X and Y channel are

dominated by transport features. In many situations, this apparent bug can be a fea-

ture by measuring transport with a modality that is potentially more sensitive than tra-

ditional transport measurement schemes. In a bridge measurement, a large background

impedance is subtracted away, allowing very minute changes to be observed. Further-

more, the resistance which is sensed is true bulk spreading resistance. This can be an

important quantity to measure in the quantum Hall regime, where traditional two- and

four-probe geometries fail to measure the bulk conductivity because they are shorted out

by the extended edge states. For example, the observation of insulating bulk with ca-

pacitance sensing allowed reference [60] to claim a quantum-spin-Hall-like phase at high

magnetic field in monolayer graphene.

3.4.4 Fixed Frequency

The previous calculations were very important to establish the frequency response of the

capacitance circuit. At the end of the day, we want to measure impedances and because

the frequency plays a natural role in the impedance of a capacitor, it is essential to un-

derstanding the bridge response. However, in typical operation, the capacitance bridge

is fixed to a working measurement frequency f0 and independent variables such as den-

sity (gate voltage) or magnetic field are modulated in order to sense relative changes in

the total capacitance and loss tangent. It is worth thinking about what happens to the

signal in the event that a change in gate voltage alters CT and R. Imagine that at zero

gate voltage V = 0 the total capacitance is 10 pF and the resistance is 100 kΩ. Then as

we change the voltage to V = 1 V the capacitance enters the edge of a band gap. The

total capacitance decreases to 9 pF and the resistance increases to 500 kΩ. At V = 2 V, the

sample enters the band gap completely and the total capacitance further reduces to 8 pF

while the resistance blows up the 50 GΩ. These changes cause the rolloff frequency to

decrease as depicted in panels a–c in Figure 3-12. Note that CT is the total capacitance and
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not the quantum capacitance. Even in the band gap in panel c, the sample’s density of

states may be substantial due to localized states which cause Cq ̸= 0. Therefore, the total

capacitance may only deviate slightly from the geometric value Cgeo, particularly in the

limit Cgeo ≪ Cq. The in-plane resistance, however, is highly sensitive to the absence of

extended electronic states. Because R changes much more dramatically than CT typically,

it pulls the rolloff frequency to the left more than the decrease in CT pulls it to the right.

If we were to plot the values of X(V) and Y(V), we would see a steady drop in X as well

as a single peak in Y.

These three panels show the importance the choice of measurement frequency f0

plays. The lowest frequency f = 5 Hz is close to the low frequency limit because at all

values of V, the change in Y is small in comparison to the changes in X. The middle fre-

quency f = 1 kHz is not in the low frequency limit. The change in X which is measured is

not truly associated with pure capacitance change. Y will show a double-peak structure

if the gate voltage pushes through the band gap and enters another highly compressible

band. The highest measurement frequency f = 500 kHz is close to the high-frequency

limit. The value of the capacitance is not properly measured at any gate voltage V and Y

shows a dip as the band gap is entered.

This can be more clear by plotting some artificial resistance and capacitance data as

a function of voltage. Then, we can plot the X and Y phase for various measurement

frequencies. Panel a of Figure 3-13 plots representative capacitance (black) and resistance

(red) traces for the series RC model discussed in this section. Panel b plots the in-phase

and out-of-phase components for a variety of measurement frequencies spanning 1 Hz to

1 GHz. The range of possible in-phase behavior underscores the need to carefully charac-

terize the frequency response. If one were to use the f = 1 GHz curve (red), it would ap-

pear that the compressibility gap spanned 20 V and approached zero. The low frequency

regime begins between 100 Hz (purple) and 1 kHz (blue) as evidence by the saturation of

the in-phase component at lower frequencies as well as the small out-of-phase compo-
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Figure 3-12: The in-phase and out-of-phase curves shift as the sample becomes increas-
ingly resistive. The measurement takes place at any one of the black dotted/dashed
traces. a) At V = 0 the sample has CT = 10 pF and R = 100 kΩ. b) At V = 1 V the
sample is at the edge of a band gap. CT = 9 pF and R = 500 kΩ. c) At V = 2 V the sample
enters a full band gap. CT = 8 pF and R = 50 GΩ. The frequency 5 Hz (dotted trace)
is near the low-frequency limit whereas the frequency 500 kHz (dot-dashed trace) is near
the high-frequency limit. The frequency 1 kHz (dashed trace) is intermediate.
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nent below 1 kHz at all gate voltages. This agrees with the minimum rolloff frequency we

can calculate from panel a where the maximum RC charging time occurs at V = 0 and is

around 8 kHz.
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Figure 3-13: The capacitance bridge output is a sensitive function of frequency a) Sam-
ple capacitance (black) and resistance (red) as a function of gate voltage. b) The in-phase
component (solid) and out-of-phase component (dashed) are plotted against gate voltage
for a series of frequencies spanning 10 − 106 Hz.
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3.4.5 Calibrations

Background Subtraction

As mentioned earlier, it is important to be able to subtract the background capacitance

from the measured signal at low frequency. One method to solve this is to measure in

both the low and high frequency limits. At high frequency the in phase component is X ≈

−Cback/Cstd and at low frequency it is X ≈ −(CT + Cback)/Cstd. Taking the difference

removes the background.

This is not possible for all samples. In particular, for small samples .100 fF of mod-

erate in-plane resistance .1 MΩ the rolloff frequency will be in the MHz regime which

may or may not be accessible depending on the measurement lines used. An alternative

approach exists for samples which have a measurable quantum Hall effect regime which

has low in-plane resistance. In the quantum Hall regime, regardless of the host material,

the orbital degeneracy of each Landau level is given by

φ

φ0
=

BAe
h

(3.54)

where φ is the total flux at field B through sample of lateral area A and φ0 is the flux

quantum. There may be additional degeneracy arising from spin, valley, etc. which we

will label g. Therefore, the total number of states within each Landau level is gBAe/h. If

we integrate the total capacitance (in-phase signal) at low frequency between two Landau

level minima, we can extract the appropriate C0 = Cback to subtract off by enforcing:

gBAe2

h
=
∫

∆V
(CT(V)− C0)dV (3.55)

where ∆V is a voltage range determined from the field and gate dependence of the ca-

pacitance data. This method will be discussed more in Chapter 4.
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Carrier Density

Typically, capacitance data are measured with respect to gate voltage as the “fast” inde-

pendent variable. Gate voltage and carrier density have an approximately linear rela-

tionship for samples that are dominated by the geometric capacitance. However, with

capacitance data it is possible to integrate the total capacitance to get the density exactly:

n =
∫ V

V0

CT(V′)− Cback

eA
dV′ (3.56)

where V0 is the voltage which corresponds with charge neutrality (or depletion).

Geometric Capacitance

The geometric capacitance is a quantity which is difficult to extract in measurements and

often must be approximated. In general, there is no relationship which allow one to per-

fectly extract Cgeo from CT because the two are intertwined with Cq which is never known

a priori. Chapter 4 will discuss an approach to estimating Cgeo which relies of fitting the

zero-magnetic field capacitance data and using finite magnetic field capacitance data to

estimate an error range based on the value of the capacitance within highly compressible

Landau levels.

Chemical Potential

With an estimate for Cgeo and CT background subtracted and expressed in terms of den-

sity, one can back out the change in the chemical potential µ:

1
CT

=
1

Cgeo
+

1
Cq

(3.57)

⇒ ∂µ

∂n
= Ae2

(
1

CT
− 1

Cgeo

)
. (3.58)
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Integrating with respect to density we can get

∆µ(n) =
∫ n

n0

Ae2
(

1
CT

− 1
Cgeo

)
dn. (3.59)

By observing the shift in chemical potential, thermodynamic gaps and the bandwidth of

energy bands can be extracted provided the entire out-of-phase component is sufficiently

small within the entire range of carrier density. Chapter 4 will provide an example.
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Chapter 4

Electronic Compressibility of Magic

Angle Graphene

4.1 Introduction

In most metals, interactions between electrons are sufficiently weak compared with elec-

tronic kinetic energy that they can be considered as a perturbation when calculating band

structure. Because the kinetic energy of an electronic system is proportional to the band-

width of its low energy bands, one route to finding materials with effectively strong

electron–electron interactions is to study systems with flat energy dispersions. One well-

studied route to generating flat energy bands is the application of a large magnetic field

to a two-dimensional electron system. At large magnetic field, the electrons undergo Lan-

dau quantization and form flat bands in momentum space. Landau levels are known to

host a variety of strongly correlated physics such as fractional quantum Hall phases [48–

50], Wigner crystals [53], and quantum Hall ferromagnets [51, 52]. Recent experimental

efforts [17, 37] have shown that stacking and rotating two monolayers of graphene by a

controllable angle between the two layers can tune the resulting low-energy band struc-

ture through a large range of energy dispersion due to the sensitivity of the interlayer
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coupling with twist angle [16, 40, 44]. At certain small twist angles, known as magic

angles, the interlayer hybridization energy concentrates the low-energy density of states

within about 10 meV according to calculations [16, 40], providing a highly tunable test

bed for strongly correlated physics.

4.1.1 Previous Experimental Work

When twisted at low twist angle, the electronic structure of the two monolayers of

graphene become hybridized due to electrons hopping and Bragg scattering off of the

emergent superlattice as discussed in section 2.4. The hybridization of the two neigh-

boring Dirac cones enabled by the moiré potential opens up avoided crossings at the

degeneracy points at positive and negative energies. This creates an effective mini-band

structure driven by the superlattice. At angles close to 1∘, the energy scales conspire to

suppress the conduction and valence bandwidths to very narrow energies, creating flat

bands.

In any tight-binding picture, the total number of eigenstates in the newly diagonal-

ized basis that incorporates hopping must be equivalent to the original number of atomic

orbitals used in the tight-binding Hamiltonian. As a result, the inevitable consequence of

confining band structure to small ranges of energy is the enhancement of the density of

states ∼ n
∆E because n is constant and ∆E becomes small. The first experimental evidence

of a large density of states enhancement in twisted bilayer graphene came from scanning

tunneling spectroscopy measurements. Van Hove singularities (logarithmic divergences

of the density of states) were observed in the low-energy moiré bands for low twist angle

samples. More importantly, these density of states peaks narrowed as the twist angle was

reduced down to 1.16∘, the smallest twist angle considered [45], demonstrating the ability

of rotation angle to be a sensitive tuning parameter.

Advances in laboratory capabilities to precisely control the rotation angle of van der

Waals heterostructures [36, 37] enabled the fabrication of a new generation of twisted
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bilayer graphene devices at low twist angle with high throughput. Observation of acti-

vation gaps of ∼30 meV corresponding to the avoided crossings generated by the moiré

potential were observed [37, 61]. These single-particle band gaps were observed at elec-

tron densities n = ±ns where ns = 4
Am

in terms of Am, the moiré superlattice unit cell

area. Am is given by
√

3λ2/2 where the moiré wavelength λ = a/2
sin(θ/2) is defined in

terms of the twist angle θ and lattice constant of graphene a. The condition n = 4
Am

cor-

responds to filling each moiré cell with 4 electrons as a result of spin (2) and moiré valley

(2) degeneracies.

While the existence of superlattice band gaps was entirely expected based on single-

particle calculations [16, 40, 44], the discovery of anomalous insulating behavior in twisted

bilayer graphene around half-filling of the moiré bands, n = ±ns/2, signaled the pres-

ence of strong electron–electron interactions [17] as plotted in Figure 4-1. At half-filling

of the conduction or valence band, absent strong Coulomb interactions, the Fermi level

is surrounded by a large number of available charge carriers similar to common met-

als. The observation of insulating behavior is only consistent with a scenario in which

the electrons are strongly correlated and formed a many-body insulating state. In fact,

the observation of anomalous insulation at half-band-filling is the hallmark of a class of

materials known as Mott insulators. The theory of Mott physics was first developed to

explain the unexpected insulation of the transition metal oxides at half-filling [62].

The basic idea behind a Mott insulator can be intuited from considering an exten-

sion of tight-binding approaches. In Chapter 2 we considered tight-binding models for

different materials in which the electron hopping term described by t characterized the

strength of the electronic kinetic energy. If we imagine the electrons being roughly lo-

calized on each atomic site, such as at half-filling where there is one electron per ion, an

electron can lower its confinement energy by delocalizing. This is achieved by hopping

back and forth from neighboring atomic sites. Of course, this treatment only considers

the kinetic energy. Whenever an electron hops onto its neighbor’s site, two electrons are
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Figure 4-1: Anomalous insulating behavior in magic angle graphene The two-terminal
conductance is plotted as a function of carrier density (adapted from reference [17]).
Broad insulating features occur near n = ±2.7 × 1012/cm2 which correspond to ±ns.
Additional insulating states are seen at n = ±ns/2.

cohabiting the same ion. This extreme proximity costs a sizable on-site Coulomb repul-

sion energy which is commonly labeled U. Because the electron’s kinetic energy wants to

spread out the electron wave function but its potential energy wants it to stay confined,

the two energy scales are in competition with one another. In typical metals and semicon-

ductors t ≫ U. However, in the limit that U & t, the electrons find it favorable to localize.

If we imagine injecting an additional electron into the system, it must double-occupy one

atomic site which will cost energy U. This opens a gap to charged excitations of order

U at the Fermi level as depicted in Figure 4-2. Away from half-filling, incommensurate

electron number allows for hopping to dominate by freeing up atomic sites for electron

(or hole) delocalization without double-occupancy.

Though the condition n = ±ns/2 corresponds to two electrons (holes) per moiré site,

the half-filled condition bears strong resemblance to a Mott-like insulator [17], though

there are currently many theoretical proposals for various strongly correlated phases

[46, 63–75]. To make the story even more interesting, superconductivity was also ob-
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Figure 4-2: Charge gap of Mott insulator (Left) The band structure is metallic at half-
filling when t ≫ U. (Right) A charge gap opens due to on-site Coulomb repulsion U.

served around n = −ns/2 (two holes per supercell) with density-dependent critical tem-

peratures up to 1.7 K [18]. Although the observed Tc is low compared to many well-

studied superconductors, the ratio of the critical temperature to the Fermi temperature

Tc/TF is similar to or higher than well studied high temperature superconductors [18].

4.2 Capacitance Measurement Scheme

In order to probe the thermodynamic ground state of magic angle graphene, we use a

low-temperature capacitance bridge to access the electronic compressibility of the two

devices originally characterized with transport in reference [18]. By measuring the com-

pressibility as a function of carrier density, we study the thermodynamic evolution of the

interaction-driven phases at fractional filling, offering new insights into the nature of the

magic-angle graphene ground state that complement previous transport [17, 18, 76–79]

and tunneling efforts [80, 81]. Additionally, we can extract the thermodynamic band-

width of the low energy bands, enabling us to evaluate their relative flatness and compare

to electronic structure calculations. Figure 4-3 shows the device geometry and measure-
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Figure 4-3: Schematic of magic-angle capacitance devices Devices from reference [18]
were originally measured in a Hall geometry for transport measurements. Here, we tie
together all electrical leads to reduce the in-plane spreading resistance. Devices are mea-
sured on a cryogenic capacitance bridge in either a helium-3 or dilution cryostat.

ment schematic. Magic angle graphene samples were fabricated using a “tear and stack”

technique described previously [36, 37]. The twisted bilayer graphene is encapsulated

between two layers of hexagonal boron nitride (hBN) and placed on top of a local, metal

back gate. The structures were etched into a Hall geometry for initial transport measure-

ments in reference [18]. However, in our capacitance measurements, we electrically short

all contacts together to reduce the RC charging time of the devices, allowing the measure-

ments to take place at higher frequency where the signal-to-noise ratio is improved.

We apply an AC excitation to the magic-angle graphene contacts and a balancing AC

excitation of variable phase and amplitude to a ∼45 fF reference capacitor connected to

the back gate in a bridge configuration as shown in Figure 4-3. We measure small changes

in the sample impedance by monitoring off-balance voltage accumulation at the balance

point, and we model the total capacitance CT of the magic-angle graphene structure as

consisting of two contributions: C−1
T = C−1

geo + C−1
q . Cgeo is the geometric capacitance
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arising from the parallel plate geometry of the magic angle graphene and local back gate

while Cq = Ae2∂n/∂µ is the quantum capacitance [11] which is directly proportional

to the thermodynamic compressibility ∂n/∂µ (A is the lateral device area and e is the

elementary charge). By measuring modulation of the capacitance as a function of gate

voltage and magnetic field, we detect the presence of gaps in the thermodynamic density

of states. Importantly, we restrict our measurements to sufficiently low frequencies to en-

sure that modulation of the measured signal arises entirely from changes of the electronic

compressibility and does not result from charging-rate effects from slow in-plane trans-

port noted in previous measurements [59] and discussed in Chapter 3. At high magnetic

field in the quantum Hall regime, where the in-plane resistance becomes appreciable, we

restrict ourselves to a qualitative discussion of the field-induced gaps.

4.3 Zero-Field Capacitance Data

Panels a and b of Figure 4-4 show capacitance (red traces) and loss tangent (blue traces)

measurements at zero magnetic field for the two devices (M2 and M1) that previously

showed unexpected insulating and superconducting phases in reference [18]. Devices

M2 and M1 were found previously to have twist angles of 1.05∘ and 1.16∘, respectively

[18]. In both samples we observe a Dirac-like feature at charge neutrality accompanied by

broad, incompressible regions around ±3 × 1012 cm−2 that correspond to either four elec-

trons (+ns) or four holes (−ns) per moiré cell. We observe incompressible phases around

ns/2 (two electron per moiré cell) in both devices and a smaller feature around −ns/2

in device M2. These incompressible features correspond to the previously reported in-

sulating phases observed around ±ns/2 in reference [18], however, in our measurement

we find that the hole-doped state is significantly less incompressible despite compara-

ble conductance values reported previously. Our results are consistent with more recent

transport measurements in which resistive phases in the electron-doped regime are gen-
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Figure 4-4: Capacitance and loss tangent of magic angle graphene at zero magnetic
field for a) device M2 with angle 1.05∘ and b) device M1 with angle 1.16∘. In both devices
strongly incompressible phases are seen at ±ns corresponding to the superlattice gaps.
Additional incommensurate phases are seen at ns/4 and ns/2. Device M2 also shows
weak incompressible features at −ns/2 and −ns/4. M2 and M1 were measured in a
helium-3 cryostat at 280 mK and dilution cryostat at 225 mK, respectively. Measurements
were performed with a 1 mV RMS excitation at 150 kHz.
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erally stronger than their hole-doped counterparts [76–79].

In both devices we find incompressible phases at ns/4 and weak incompressible fea-

tures at −ns/4 in device M2. Importantly, the magnitude of the incompressible features

at ns/4 and ns/2 are comparable in magnitude despite a lack of insulating temperature-

dependence at ns/4 reported previously [18, 76, 78]. In device M2, raising the temper-

ature to 5 K, the highest temperature accessed, produced virtually no change in the ca-

pacitance features at commensurate filling (see subsection 4.3.2). We see no strong com-

pressibility features around ±3ns/4 in contrast to recent transport studies [18, 76–79],

although, we observe a gradual decrease in capacitance around ±3ns/4 as the system

enters the superlattice band gaps which makes observation of incompressible features

difficult to distinguish in this region.

4.3.1 Reduced Fermi Velocity

After subtracting a constant background capacitance Cback arising from the substrate and

bond pads (see details at the end of the chapter), the relationship

C−1
T = C−1

geo +
(

Ae2∂n/∂µ
)−1

(4.1)

can be used to extract properties related to the compressibility ∂n/∂µ. At low tempera-

tures, where thermal smearing from the Fermi–Dirac distribution is negligible, the com-

pressibility can be approximated well by the zero-temperature density of states. Although

the electronic structure of magic angle graphene is far from the monolayer graphene limit

that holds for larger twist angles, we can still estimate the reduction of the Fermi velocity

vF = ∂E/∂(h̄k) at k = Ks using a monolayer-like model with the appropriate degeneracy

factor. At low energy the monolayer graphene dispersion is given by

EF = h̄vFk (4.2)
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and in two dimensions the number of k-states available is given by

N = g
A

(2π)2 πk2
F (4.3)

in terms of the lateral area A and the degeneracy factor g. Taking the derivative and

substituting in terms of the energy we find

∂n
∂µ

=
1
A

∂N
∂kF

∂kF

∂EF
=

gkF

2π

1
h̄vF

=

√
g

√
πh̄vF

√
|n|. (4.4)

For a Dirac-like system with eight-fold degeneracy arising from spin, valley, and layer

degrees of freedom, g = 8. Additionally, because we are spatially averaging the density

of states over the lateral area A of the sample, there will be some broadening of the den-

sity of states that creates a non-vanishing density of states at charge neutrality. This can

be captured phenomenologically by convolving the density of states ∂n/∂µ with a Gaus-

sian g(n) = e−n2/2Γ2
/
(√

2πΓ
)

where Γ characterizes the scales of the charge density

broadening. The disorder-broadened density of states is then given by:

∂n
∂µ

* g(n). (4.5)

We fit our capacitance data using Equations 4.1 and 4.5 and determine vF, Γ, and the

geometric capacitance Cgeo from a best-fitting procedure. Although there is some mu-

tual dependence on the values of Cgeo and vF, we do not expect the essential order of

magnitude of the reduced Fermi velocity to change if we allow Cgeo to vary over a rea-

sonable range of uncertainty determined by the high magnetic field Landau level capaci-

tance peaks (discussed at the end of the chapter). We estimate the area A from the litho-

graphic dimensions of the magic-angle graphene heterostructure that lies over the back

gate. The capacitance data from sample M2 are best fit by vF = 0.116 × 106 m/s and

Γ = 4.0 × 1010/cm2, both of similar magnitude to the values extracted previously with
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a different sample (1.08∘) [17]. Figure 4-5 shows the capacitance data from M2 overlaid

with the model evaluated at various values of vF.
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Figure 4-5: Extraction of Fermi velocity for device M2 The Dirac point is best fit by
vF = 0.116 × 106 m/s. The bare Fermi velocity 106 m/s (purple trace) and 0.5 × 106 m/s
(gray trace) are plotted for comparison.

4.3.2 Capacitance at Higher Temperature

Upon warming to 5 K the capacitance of sample M2 shows essentially no change near

the commensurate filling gaps on the electron side at zero magnetic field as shown in

Figure 4-6. The purple (orange) trace shows the capacitance at zero magnetic field and

280 mK (5 K). The lack of temperature evolution implies that the energy gaps at commen-

surate filling are well in excess of 5 K, consistent with our gap estimation in Figure 4-7.

This rules out thermal broadening as an explanation for the relatively wide dips in capac-

itance at commensurate filling. The lack of sharp features is likely due to inhomogeneity

in the twist angle throughout the device, causing the condition n = ns/2 to occur at
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slightly different carrier densities throughout the sample. At B = 9 T the capacitance

minima are suppressed upon warming from 280 mK (blue) to 5 K (red). At high magnetic

field our measurements are no longer in the low frequency limit due to the large in-plane

resistivity of the sample while in a quantum Hall gap. The capacitance minima at base

temperature are exaggerated by the failure of the sample to charge completely on each

excitation cycle. Upon warming to 5 K the in-plane conductivity increases, leading to a

reduction in the capacitance features. This evolution at high magnetic field with temper-

ature is likely not related to a change in the thermodynamic density of states, but rather

in-plane transport features.
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Figure 4-6: High temperature capacitance of device M2 Plot of the temperature depen-
dence of the capacitance on the electron side near commensurate fillings. The purple
(orange) trace shows the zero-field capacitance at 280 mK (5 K) while the blue (red) trace
shows the capacitance at B = 9 T at 280 mK (5 K). The 9 T data has been shifted down for
clarity. The capacitance was measured with a 2.8 mV RMS excitation at 30 kHz.
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4.4 Chemical Potential Shift

One of the most important quantities accessible in our measurement is the chemical po-

tential µ. The shift of the chemical potential as carriers are added to the device can be

extracted by integrating the inverse quantum capacitance

∆µ =
∫

∂µ

∂n
dn =

∫
Ae2

(
C−1

T − C−1
geo

)
dn. (4.6)

Panel a of Figure 4-7 shows the calculated chemical potential as a function of carrier
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Figure 4-7: Shift of chemical potential in device M2 as a function of carrier density a)
The shift in µ was extracted by integrating the inverse quantum capacitance. b) Zoom-
in to boxed region of a. The increase in the chemical potential between the density of
states maxima at both ns/4 and ns/2 is shown on the left axis with capacitance data from
panel a of Figure 4-4 replotted on the right axis. The horizontal dashed lines indicate
the range of the density of states maxima around the dips at ns/4 and ns/2. We find
∆ns/4 = (3.0 ± 1.0)meV and ∆ns/2 = (3.9 ± 1.2)meV.

density for device M2. Portions of the trace with relatively flat slopes correspond to

compressible phases where the chemical potential shifts relatively little as carriers are

added to the system. Conversely, steeper regions correspond to reductions in the den-

sity of states. The superlattice band gaps around ±ns manifest as the steep slopes near
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n = ±3 × 1012 cm−2. On the electron side, where the size of the capacitance dips is appre-

ciable, the thermodynamic gap between the density of states peaks can be calculated for

both ns/4 and ns/2 as shown in panel b of Figure 4-7. We find ∆ns/4 = (3.0 ± 1.0)meV

and ∆ns/2 = (3.9 ± 1.2)meV where the error associated with the gap estimation arises

from a systematic error in the determination of Cgeo. In these calculations we use the

value of Cgeo which is determined by the best fit of the capacitance data to the model in

Equation 4.1. In order to account for the possibility that the geometric capacitance may

deviate from this fit-derived value, we determine a range of uncertainty by inspection of

highly compressible Landau levels. The error estimation and its propagation in the ther-

modynamic gap measurements is discussed at the end of the chapter. The gap at ns/4

was either not observed previously [17, 18, 80, 81], found to have non-activated temper-

ature dependence [76, 78], or the resistive feature was not discussed in detail [77]. A re-

cent transport study reported simply-activated temperature dependence at quarter-filling

with a gap value of 0.14 meV [79], though the presence of a gap at charge neutrality in ref-

erence [79] may indicate that the twisted bilayer graphene is aligned with the underlying

hBN substrate as possibly indicated by the presence of a gap at charge neutrality in con-

trast to what we observe in our devices. Our estimate of ∆ns/2 is significantly larger than

the previously reported values of 0.31 meV in reference [17], ∼1.5 meV in reference [76],

and 0.37 meV in reference [79].

We expect the gap extracted from thermodynamic compressibility to be larger than the

activation gap measured through the temperature dependence of the resistivity. As tem-

perature is increased, the electron–electron correlations that create the many-body gap

may weaken, causing the gap to decrease as a function of temperature and leading to an

underestimation in activation measurements. By measuring at a fixed, low temperature,

the gap derived from compressibility is potentially larger. Additionally, there may be a

large density of charge carriers that can be thermally excited across the many-body gap

at energies that are closer to the Fermi level than the density of states maxima, leading
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to a smaller activation gap. If we measure the shift in chemical potential just around the

steepest portions of trace in panel b of Figure 4-7, we find values of approximately 2 meV

and 2.5 meV for the ns/4 and ns/2 states, respectively. These values may compare more

directly to activation measurements.

We can also make a comparison to recent scanning tunneling spectroscopy (STS) mea-

surements in which splittings of the van Hove singularity at ns/2 of roughly 7.5 meV [80]

and 4 − 8 meV [81] have been measured. Because the scanning tunneling microscope tip

is placed over a clean, atomically resolved region of the sample, the effects of disorder av-

eraging are avoided, leading to a potentially larger observed spectroscopic gap. We note

that the van Hove singularity separation when the Fermi level lies at half-filling as seen in

STS measurements differs qualitatively from the chemical potential separation observed

in compressibility. In the latter case, the carrier density and the band structure itself vary

as the Fermi level is raised due to density-dependent electron–electron interactions as dis-

cussed in subsection 3.2.1. Additionally, STS measures the single particle density of states

which is a different quantity from the thermodynamic density of states ∂n/∂µ accessed in

our measurements.

4.5 Compressibility at Zero Magnetic Field

We plot the compressibility ∂n/∂µ = 1
Ae2

(
C−1

T − C−1
geo

)−1
as shown in Figure 4-8. The

vertical scale of the compressibility is very sensitive to the precise value of Cgeo, partic-

ularly the highly compressible phases in which CT ≈ Cgeo. Nonetheless, the horizontal

axis is much less sensitive to variation in Cgeo, and we can estimate the bandwidth of the

two low-energy moiré bands as 35 meV. If we vary the precise value of Cgeo over an es-

timated uncertainty, the bandwidth varies from as small as 25 meV to as large as 45 meV.

This range of values is much larger than initial calculations for a rotation angle of 1.05∘

[16, 17, 40, 44], but it is consistent with the 41 meV separation of the valence and conduc-
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Figure 4-8: The compressibility of device M2 is plotted as a function of chemical poten-
tial µ. The approximate bandwidth is 35 meV.
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tion band van Hove singularities predicted by recent tight-binding calculations and the

accompanying 55 meV separation observed by STS for a slightly larger rotation angle of

1.10∘ [80].

In order to explore the dependence of ∂n/∂µ on the value of the geometric capaci-

tance, we plot the compressibility for our best estimate of Cgeo as well as the upper and

lower bounds of our uncertainty estimate Cgeo ± δc for δc = 0.014 fF in Figure 4-9. The

bandwidth range is roughly 25− 45 meV. The vertical axis is very sensitive to the specific

choice of Cgeo whenever CT ≈ Cgeo which is why the highly compressible peaks reach

such different values of ∂n/∂µ. The lower compressibility features (e.g. charge neutrality,

commensurate filling on the electron side) show much less variation. The plot in panel c

has been cut off above 15 eV−1 nm−2, where the central density of states maximum rises

to about 55 eV−1 nm−2, in order to more easily compare the low compressibility features

between panels.
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Figure 4-9: Comparison of the compressibility for M2 with different Cgeo a) The best
estimate 20.213 fF is used. b) The largest value in the uncertainty range 20.227 fF is used.
c) The smallest value in the uncertainty range 20.199 fF is used.
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4.6 Magnetic Field Dependence

We also measure the evolution of the compressibility with magnetic field up to the quan-

tum Hall regime. In panel a of Figure 4-10 we plot the capacitance as a function of gate

voltage and magnetic field. The incompressible phases at commensurate filling of the

mini-band do not appear to change with perpendicular magnetic field up to about 3 T

after which field-induced gaps arise and coexist, making it difficult to track the relatively

broader features associated with the zero-field incompressible phases. The most promi-

nent feature in panel a of Figure 4-10 is the four-fold degenerate Landau fan that emerges

from charge neutrality. Despite anticipating an eight-fold degenerate zero-energy Landau

level arising from spin, valley, and layer degrees of freedom, our system never develops

a compressible phase at charge neutrality, indicating that layer or valley symmetry break-

ing is present even at zero magnetic field. Four-fold degeneracy may be evidence of C3

rotational symmetry breaking as recently proposed [82]. At larger magnetic fields, we

observe incompressible phases at filling factors within the lowest Landau level octet.

These additional incompressible phases presumably arise from exchange-driven gaps

as reported in monolayer and bilayer graphene [52, 83–87]. In addition, Landau levels

emerging from the superlattice gaps of device M2 are apparent in panel a of Figure 4-10

as well as from device M1 (see Figure 4-13).

Additionally, we see a set of gaps emerging from high magnetic field whose intercepts

terminate near the fractional filling densities as indicated by the red traces in panel b of

Figure 4-10. These gaps appear to form as a result of “Hofstadter” fractal mini-bands

[88, 89]. In panel a of Figure 4-10 some of the gaps which approach commensurate filling

appear doubled, suggesting there may be multiple regions within the device with slightly

different twist angle. The number of flux quanta per moiré unit cell is plotted on the right

vertical axes in Figure 4-10. The incompressible phases shown in red intersect at φ/φ0 = 1

which occurs at B = 29.64 T for θ = 1.05∘. The Wannier diagram in Figure 4-11 displays

some of the possible trajectories of the incompressible phases (gray tracs) while the black
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Figure 4-10: The field-dependence of the capacitance of device M2 a) The capacitance
up to the quantum Hall regime is plotted as a function of gate voltage and magnetic field.
The color scale has been suppressed below 19.5 fF in order to show more detail. b) A
map of observed gaps in magnetic field measurement in a is plotted. Black traces indicate
cyclotron and exchange gaps arising from charge neutrality with the filling factor labeled.
Red traces indicate gaps emanating from high magnetic field due to “Hofstadter” replica
mini-bands at commensurate filling and magnetic field.
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and red traces are colored to match the features in Figure 4-10. Similar features have been

observed extensively in aligned graphene–hBN structures [87, 90, 91] as well as twisted

bilayer graphene devices [37, 61].

Unlike reference [76], where no Landau fan was observed emanating from −ns/4, we

observe an incompressible phase emerge from high magnetic field whose intercept ter-

minates at −ns/4. Additionally, we observe an incompressible phase emanating from

ns/4 corresponding to ν = 3 and not ν = 1 as seen previously [76]. The presence of

strong quantum oscillations at low magnetic field close to commensurate filling in trans-

port [18, 76, 79] indicates the formation of an emergent Fermi surface and its quantization

in magnetic field. Oscillations in transport measurements reflect the field-dependence

of both the scattering time τ as well as the density of available charge carriers. Because

low-frequency capacitance measurements are insensitive to changes in the scattering rate,

strong features are not expected when Landau quantization is weak which may explain

the lack of low-field capacitance oscillations in our data in contrast with transport [18, 76].

In Figure 4-12 we plot the loss tangent of device M2 as a function of carrier density and

magnetic field in order to reveal additional information about the in-plane conductivity

of the sample. The loss tangent is given by ωRin-planeCT. Increases in the loss tangent cor-

respond to increases in the in-plane resistance (which tend to dominate any changes in CT

at high magnetic field for this device) as a resistive state is entered and serve as a quali-

tative measure of the in-plane bulk transport. The bright features emanating from charge

neutrality are the cyclotron and exchange gaps arising from the quantum Hall regime

whereas the bright features that emanate from high magnetic field and terminate near the

commensurate fillings arise from fractal “Hofstadter” mini-bands due to the interaction

of the magnetic field and superlattice potential. Importantly, the half-filling state on the

electron-doped regime shows faint vertical features which appear to terminate around

3 T, though they becomes partially obscured due to the coexistence of the fractal mini-

band feature. This indicates that the resistive features survive to at least 3 T. There are
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multiple closely spaced resistive features which are grouped around the half-filling loca-

tion, indicating possible inhomogeneity in the rotation angle across the lateral extent of

the sample. Importantly, we do not see doubling of the central Landau fan indicating that

the charge density across the sample remains uniform. We do not see noticeable resistive

features associated with either the hole states or the quarter-filled electronic state.
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Figure 4-12: The loss tangent of device M2 is plotted with respect to magnetic field and
carrier density. Weak resistive features around ns/2 are visible and track vertically with
magnetic field until being obscured by the fractal mini-band gaps around 3 T. Multiple
vertical features adjacent to one another indicate that the twist angle may be inhomo-
geneous through the entire sample. The color scale has been suppressed above 0.004 in
order to reveal weaker features at low magnetic field.

In panel a of Figure 4-13 we plot the magnetic field dependence of device M1. Adja-

cent to the main Landau fan is a second, weaker fan emanating from a displaced Dirac

point, indicating that the sample experiences a second region which is at a slightly dif-

ferent doping. This may be associated with a region of the device adjacent to one of the

ohmic contacts away from the central portion of the etched Hall bar geometry. Similar to

device M2, incompressible phases (red lines in panel b of Figure 4-13) emerge from high

magnetic field on the electron-doped side and tend towards commensurate filling loca-
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tions on the abscissa. Here, the gaps emanating from high field do not appear doubled

(as in device M2), indicating improved homogeneity in the rotation angle.
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Figure 4-13: The field dependence of device M1 a) The capacitance up to the quantum
Hall regime is plotted as a function of gate voltage and magnetic field. The color scale
has been suppressed below 20.5 fF. (b) Schematic showing some of the important incom-
pressible phases of device M1. The black lines indicate cyclotron or exchange gaps arising
from the central Landau fan. The blue lines indicate the gaps arising from an additional,
weaker Landau fan, indicating device M1 has a region of density inhomogeneity. Filling
factors are labeled. The red lines indicate field-induced gaps which terminate at the com-
mensurate filling associated with fractal mini-band gaps. In contrast to device M2, the
fractal mini-band gaps do not appear doubled, indicating improved twist angle unifor-
mity.
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4.7 Discussion

4.7.1 Incompressible Phases

Although there is no consensus on the nature of the commensurate insulating phases, our

results allow us to comment on a few recent proposals. One effort posits that the corre-

lated insulating phase at half-filling is not a Mott-like insulator, but rather a Wigner crystal

in which the electrons freeze into an emergent lattice as a result of long-range Coulomb

repulsion [64, 74]. Although a Wigner crystal is electrically insulating due to pinning of

the electron lattice by disorder, domains, or the moiré lattice itself, the compressibility of

the Wigner crystal is expected to be large and negative due to long-range Coulomb inter-

actions [92]. Unlike DC transport, compressibility is one of the few techniques which is

capable of providing positive evidence of Wigner crystallization. In our measurements,

the compressibility decreases at commensurate filling while remaining positive and non-

diverging, implying the likely formation of an energy gap and not a highly (negatively)

compressible phase expected for an ideal Wigner crystal. However, unlike the conven-

tional case, if the moiré potential strongly pins the electron lattice, it may be possible to

form a thermodynamic energy gap [93]. We also cannot rule out the possibility of such

a Wigner crystal and another gapped phase coexisting via phase separation as has been

speculated to occur in GaAs bilayers [94]. Additionally, it may be possible to interpret

the multiple density of states peaks as arising from differential strain between the two

twisted bilayer graphene layers [95].

4.7.2 Bandwidth

Although initial band structure calculations predicted narrow low energy bands between

5 and 10 meV [16, 17, 40, 44, 70], recent focus on lattice relaxation effects have brought

estimates closer to experiment (∼20 meV) [96, 97], however, at least one other lattice re-

laxation model predicts a narrowing of the bandwidth as compared to unrelaxed calcu-
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lations [98]. Our data support a bandwidth in the range of 25 to 45 meV, suggesting that

the non-interacting band structure is not as narrow as anticipated by theory, leading to

larger values of kinetic energy. This suggests that, in the creation of the correlated insulat-

ing states, the kinetic energy may play a more substantive role than many single-particle

calculations imply. Moreover, as recently proposed [75], it is possible that the interaction

effects are also strongly enhanced by a power-law diverging van Hove singularity.

4.8 Conclusions

In summary, we used compressibility measurements to access the shift of the chemical

potential as the low-energy band structure is filled. We report a reduced Fermi velocity,

a wide ∼35 meV bandwidth compared with many electronic structure calculations, and

measure the gap widths at ns/4 and ns/2. The incompressible features at commensurate

filling show essentially no field-evolution up to 3 T before becoming obscured by other

field-induced gaps. We do not observe strong Landau quantization at low magnetic field

around commensurate filling, but at larger magnetic field we detect “Hofstadter” gaps

that differ from previous transport studies [17, 76, 79].

Reference Technique θ ∆ns/2 (meV) ∆ns/4 (meV) Bandwidth (meV)
This work Compressibility 1.05∘ 3.9 ± 1.2 3.0 ± 1.0 35 ± 10

[17] Transport 1.08∘ 0.31
[76] Transport 1.10∘ ∼1.5
[80] STS 1.10∘ ∼7.5 55
[81] STS 1.04∘ 4 − 8 ∼50
[79] Transport 1.10∘ 0.37 0.14

Table 4.1: Comparison of gaps and bandwidths from recent transport and tunneling
reports and the results contained in this thesis.
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4.9 Additional Details

4.9.1 Sample Preparation

The samples were fabricated using a dry transfer technique modified with a rotation

stage described previously [17, 18, 37]. The devices were originally measured in refer-

ence [18]. Monolayer graphene and hBN crystals of 10–30 nm thickness were exfoliated

onto clean Si/SiO2 substrates, identified optically, and characterized with atomic force

microscopy. The twisted bilayer graphene was constructed by “tearing and stacking”

a clean monolayer with a precise rotational misalignment. A poly(bisphenol A carbon-

ate) (PC)/polydimethylsiloxane (PDMS) stack on a glass slide was used to first pick up

a piece of hBN at 90 ∘C after which the van der Waals forces between hBN and graphene

were used to tear a graphene flake close to room temperature. The separated graphene

pieces were rotated manually by a twist angle around 1.2–1.3∘ and stacked on top of one

another. The stack was encapsulated by a piece of hBN on the bottom and released at

160 ∘C onto a Cr/PdAu metal back gate on top of a highly resistive Si/SiO2 substrate.

The samples were not annealed to prevent the twisted bilayer graphene from relaxing

back to Bernal-stacked bilayer graphene. The device geometry was defined using stan-

dard electron-beam lithography techniques and reactive ion etching with fluoroform and

O2 plasmas. Electrical contact was made to the twisted bilayer graphene with Cr/Au

edge-contacted leads [99].

4.9.2 Measurement Circuit

Sample M2 was measured in a helium-3 cryostat at 280 mK, and sample M1 was mea-

sured in a dilution refrigerator at a temperature of 225 mK with the exception of the high

temperature measurements of M2. Capacitance and loss tangent measurements were car-

ried out on homemade cryogenic capacitance bridges on the same chip carriers as the

samples. Figure 4-14 shows the full circuit schematic. The sample is modeled as a series

147



Vex

Vg

Vstd

Bias-tee

CTRin-plane

Sample

Base temperature

Cstd

HEMT

1 K 300 K
LIA

Figure 4-14: The cryogenic impedance bridge used to measure the capacitance and loss
tangent contains a double-stage amplifier at base temperature. The signal is driven to the
lock-in amplifier by additional amplification stages at the 1 K pot and at room tempera-
ture.

resistor and capacitor in red. AC and DC voltages are applied to the sample through a

cryogenic bias-tee adjacent to the sample. An AC signal of variable phase and amplitude

is applied to a fixed ∼45 fF reference capacitor to balance the sample capacitance at the

bridge balance point. After an initial balance is achieved, changes in the sample capaci-

tance are inferred from the off-balance voltage that accumulates at the balance point. The

size of the reference capacitor is determined on a subsequent cooldown with a known 2 pF

capacitor. Three Fujitsu FHX35X high electron mobility transistors (HEMTs) are used in

a double-amplifier configuration. The main amplification stage occurs at the gate of the

labeled HEMT which has been cleaved in half to minimize its stray capacitance. A second

HEMT (also cleaved) is used as a variable resistor (typically set to about 100 MΩ) to pinch

off the measurement HEMT’s channel to about 100 kΩ. A third follower HEMT which is

uncleaved drives the signal to a homemade wide-bandwidth amplifier located at the 1 K

pot of the fridge followed by a similar amplification stage at room temperature before

being measured on a lock-in amplifier (Signal Recovery SR7280). See Appendix B for the

full circuit layouts of the cryogenic amplifiers. An excitation voltage of 2.8 mV RMS was

148



applied at 150 kHz for all measurements unless otherwise indicated.

4.9.3 Capacitance Corrections

Due to slight mismatches in the cabling of the reference and sample lines due to different

attenuators as well as slight offsets in the relative phase of the excitation and reference

voltages sources, our measurements show a constant offset in the out-of-phase compo-

nent (which for small values of Y is approximately equal to the loss tangent) that is not

attributed to the sample. In order to correct for this small phase shift we find the values

of the in-phase and out-of-phase components of our signal near a highly compressible

state that should have minimal in-plane resistance and an extremely small out-of-phase

component. We apply a rotation matrix M(θ) (typically the rotation angle θ ≈ 1∘) to our

in- and out-of-phase signal measurements to correct this artifact. This leaves the in-phase

component virtually unchanged and shifts the out-of-phase signal to the correct baseline.

Our samples have a substantial stray capacitance of around 50 fF that manifests in our

measurement as a constant background in parallel with the sample Craw = Cback + CT =

Cback +
(

C−1
geo + C−1

q

)−1
. In order to accurately subtract this constant background, we uti-

lize the field-dependent capacitance measurements where we can accurately determine

the minima of the cyclotron gaps of the Landau fan emerging from charge neutrality (see

Figure 4-10). Regardless of the underlying band structure, all Landau levels can be char-

acterized by a field-dependent orbital degeneracy φ/φ0 = BAe/h where φ is the total

magnetic flux through the sample, φ0 is the flux quantum, B is the magnetic field, A the

sample area, e is the elementary charge, and h is Planck’s constant. This orbital degen-

eracy is augmented by a factor of 8 arising from the spin, valley, and layer degrees of

freedom. Therefore, between the filling factor ν = ±4, we know the total charge accu-

mulated in the sample is given by 8BAe2/h. The total charge accumulated in the sample

is also given by integrating the total capacitance: Q =
∫

∆V CTdV where the limits of in-

tegration are determined by the gate voltages in Figure 4-10. Therefore, the appropriate
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value of Cback is found by enforcing

8BAe2/h = Q =
∫

∆V
(Craw − Cback) dV. (4.7)

In this analysis we assume that the strongest gaps emerging from charge neutrality

correspond to ν = ±4 as expected for a twisted bilayer graphene system. This is con-

firmed by calculating the slope of the gaps in Figure 4-10 and using the relationship

ν =
nA

φ/φ0
=

nφ0

B
=

(
CT/A

)
∆Vφ0

eB
(4.8)

where CT is the average total capacitance between the Landau level minima. Because CT

is roughly equal to the geometric value of the capacitance which is well approximated by

a parallel plate model, we can say CT/A ≈ εε0/d where ε is the relative dielectric of the

hBN (∼4.5) and d is the thickness of the dielectric (∼30 nm) determined from atomic force

microscopy and ε0 is the vacuum permittivity, yielding:

ν ≈ εε0∆Vφ0

deB
. (4.9)

After extracting the slope of the gap in Figure 4-10 and equating it to B
∆V and using esti-

mated values for ε and d, we can verify that ν = ±4. Additionally this allows us to verify

that our background subtraction is reasonable by confirming CT ≈ Craw − Cback.

4.9.4 Converting to Carrier Density

Unlike transport measurements, our capacitance technique allows us to convert gate volt-

age to carrier density exactly. Typically, in transport the gating capacitance is taken as a

constant CT (usually extracted from Landau fans or modeled with parallel plate geome-

tries) and is often described as purely geometric but in reality is an average value of the

total capacitance that includes contributions from the quantum capacitance that vary as a
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function of density. In most samples Cq ≫ Cgeo so that CT ≈ Cgeo, allowing this approxi-

mation to hold. For our measurements we can simply integrate the total capacitance with

respect to gate voltage to directly calculate the induced charge density:

n(V) =
1

Ae

∫ V

VDirac

CT(V′)dV′ (4.10)

where we have set the carrier density at the gate voltage associated with the Dirac point to

0. For our samples the quantum capacitance Cq is always much larger than the geomet-

ric capacitance inside the superlattice gaps. Therefore, the relationship between carrier

density and gate voltage is roughly proportional, but there are subtle nonlinearities near

locations of relatively small quantum capacitance (e.g. near charge neutrality) that are

captured in this conversion.

4.9.5 Determining the Geometric Capacitance

Our quantitative analysis relies on estimating the value of the geometric capacitance Cgeo.

In order to estimate Cgeo we use the model 𝒞(n) for the total capacitance:

𝒞(n) =
(

1
Cgeo

+
1

Ae2∂n/∂µ(n)

)−1

. (4.11)

For a bilayer graphene system with eight-fold degeneracy the density of states is given

by

∂n
∂µ

=
2
√

2√
πh̄vF

√
|n| (4.12)

where EF is the Fermi energy, vF the Fermi velocity, and h̄ is Planck’s reduced constant. We

convolve ∂n/∂µ with a Gaussian g(n) = e−n2/2Γ/
(√

2πΓ
)

to take into account disorder-

broadening. We fit this model to our data to determine the best fit values of vF, Γ, and

Cgeo. The value of Cgeo extracted from best-fitting agrees nicely with the peaks in the
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highly compressible Landau levels that we expect to be very close to the geometric ca-

pacitance and possibly in excess if negative compressibility is present [100, 101]. See

Figure 4-15 for plots of Cgeo overlaid with the field-dependent capacitance data. In order

to account for the fact that our fit-derived value may deviate from the true value of the

geometric capacitance, we estimate an uncertain δc = 0.014 fF in Cgeo based on a visual

analysis of the compressible Landau level peaks. The lower bound of our uncertainty

corresponds to assuming that the density of states maxima in the zero-field capacitance

data are nearly perfectly compressible. This is a reasonable lower bound assuming that

the density of states peaks do not exhibit negative compressibility. This is justifiable if we

compare these maxima to the highly compressible Landau levels between ν = −12 and

ν = −4 at B = 3 T, a large enough field for good Landau quantization but low enough

that the exchange gaps and “Hofstadter” features at high magnetic field do not overlap.

The capacitance signal forms clear plateaus with no sign of negative compressibility and

remains larger in value than the zero-field data at all densities. See b of Figure 4-15 where

the blue trace saturates close to the fit-derived value of Cgeo between about n = −1 and

−0.5 × 1012 cm−2 and remains larger than all capacitance values in the red trace. The

upper bound of Cgeo is placed near the highest capacitance values recorded at high mag-

netic field where we expect the capacitance peaks to be highly compressible and possibly

enhanced beyond the geometric value if negative compressibility is present. The role of

the geometric capacitance uncertainty and its propagation in the thermodynamic gap and

bandwidth calculations are detailed below.
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Figure 4-15: a) Plot of capacitance traces at B = 0 (red), 3 T (blue), and 9 T (green) as well
as the estimate for Cgeo (black dashed trace). The gray region represents the estimated
uncertainty in Cgeo. b) Zoom-in of a.
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4.9.6 Uncertainty in Thermodynamic Gaps and Bandwidth

The inverse compressibility is integrated to extract the chemical potential µ as a function

of carrier density n. A small error (compared to the magnitude of Cgeo) in the geometric

capacitance causes a spurious linear background in the overall slope of µ(n). If we take

the true geometric capacitance to be Cgeo and δc a small error we compute

1
CT

− 1
Cgeo + δc

≈ 1
CT

− 1
Cgeo

+
δc

C2
geo

. (4.13)

Multiplying through by Ae2 we can cast this in terms of the inverse compressibility and

an associated deviation:

Ae2
(

1
CT

− 1
Cgeo + δc

)
≈ ∂µ

∂n
+

Ae2δc
C2

geo
. (4.14)

The change in computed chemical potential across a range of density ∆n is therefore

∫
∆n

Ae2
(

1
CT

− 1
Cgeo + δc

)
dn = ∆µ +

Ae2δc
C2

geo
∆n (4.15)

where ∆µ represents the true change in chemical potential and Ae2δc
C2

geo
∆n the associated

systematic error. If we use the value δc = 0.014 fF based on our fit-derived estimate

of Cgeo and a visual analysis of the field-dependent data, the errors associated with the

gaps at ns/4 and ns/2 are found to be δ (∆ns/4) = 1.0 meV and δ (∆ns/2) = 1.2 meV,

respectively. The larger error for ∆ns/2 is due to its slightly larger span in carrier density

∆n.

In a similar vein, when plotting the compressibility in Figure 4-8 uncertainty in the

precise value of Cgeo can contribute an uncertainty in the movement of the chemical po-

tential with density. As detailed previously in Equations 4.13–4.15, the uncertainty in the

shift of the chemical potential δ(∆µ) can be related to the uncertainty in the geometric
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capacitance δc through

δ(∆µ) =
Ae2δc
C2

geo
∆n. (4.16)

Because our total bandwidth spans a density approximately given by ∆n = 6 × 1012 cm−2,

the associated error in bandwidth is given by δ(∆µ) ≈ 10 meV. In Figure 4-8 we find a

bandwidth of approximately 35 meV. Incorporating our estimated uncertainty, the band-

width has a range that spans approximately 25 − 45 meV which matches the range of

bandwidths plotted in Figure 4-9.
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Chapter 5

Planar Tunneling Measurements

In Chapter 3 we discussed the electronic compressibility ∂n/∂µ of two-dimensional sys-

tems. Because the compressibility depends explicitly on the chemical potential µ, it de-

scribes the quantum mechanical ground state of the electronic system. We cannot use the

compressibility to study the excitation spectrum of the system. In order to access its fun-

damental excitations, we must use a spectroscopic technique. In this chapter, we describe

one such tool, electron tunneling.

5.1 Basics of Planar Tunneling

In an electron tunneling measurement, a thin insulating barrier separates two electronic

systems. Although the potential energy barrier prevents strong coupling between wave

functions on either side, it is thin enough that the exponentially suppressed wave func-

tions within the classically forbidden insulating region have significant overlap. Appli-

cation of a potential difference across the barrier stimulates electrons to equilibrate by

tunneling from the higher Fermi level to the available lower energy states in the neigh-

boring system. This transfer of charge can be related to the densities of state for each

electronic system. We will review some of the basic concepts below.
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5.1.1 Transmission Through a Barrier

|ψ(x)|2

Figure 5-1: An electron incident on a rectangular potential barrier with energy E less
than the potential barrier height V0. The wave-like solution on the left gives way to an
exponential decay within the classically forbidden region. The probability amplitude is
small but nonzero on the right of the potential barrier where another plane wave state is
allowed.

If we imagine a one dimensional potential barrier such that it has height V0 whenever

|x| < a and 0 elsewhere, we can calculate the quantum mechanical transmission proba-

bility of an electron impinging from the left with energy E < V0. By enforcing continuity

of the wave function and its derivative at x = ±a, the transmission coefficient can be

calculated [19]:

T =
1

1 + V2
0

4E(V0−E) sinh2
(

2a
h̄

√
2m(V0 − E)

) (5.1)

which demonstrates the permeability of the barrier even for E < V0. Typically we will be

interested in energies such that E ≪ V0 so that

T ≃ 16E
V0

e−4a
√

2mV0/h̄ (5.2)

which is dominated by the exponential term. For our purposes, we will typically be

concerned with tunneling in a very narrow range of energy from µ to µ + δE where δE ≪

µ, V0 so that T(E) is approximately constant.
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5.1.2 Metal–Insulator–Metal Tunneling

a) b)

EF,left EF,right

V = 0

EF,left

EF,right

V > 0

Figure 5-2: Two metals separated by a thin insulating barrier a) At V = 0, the two metals
are in equilibrium and there is no charge transfer. b) At V > 0 the right electrode is pulled
beneath the Fermi level of the left electrode. A net charge current from the left electrode
flows into the right electrode.

The tunneling current between two identical metals separated by a thin insulating

barrier is perhaps the simplest tunneling scenario we can calculate. If we apply a voltage

V across the tunnel junction shown in Figure 5-2, we can use Fermi’s golden rule to cal-

culate the current. Let the left electrode be ground and the right electrode be lowered in

energy by −eV for V > 0. An electron traveling from a state k in the left electrode to a

state l in the right electrode tunnels at rate

wkl =
2π

h̄
|Tkl|2δ(Ek + EF,left − (El + EF,right)) (5.3)

=
2π

h̄
|Tkl|2δ(Ek − El + eV). (5.4)

We can integrate over all such states l on the right electrode to find the total rate of transfer

from state k on the left to the states on the right:

wk =
2π

h̄

∫ ∞

−∞
dElρR(El)|Tkl|2δ(Ek − El + eV) (5.5)
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where ρR(E) is the density of states of the right electrode. Assuming Tkl ≃ T is approxi-

mately constant we get

wk =
2π

h̄
|T|2ρR(Ek + eV). (5.6)

We can integrate this total rate from left to right over all states k on the left. We will

weight by the Fermi–Dirac distribution f (Ek) to characterize the occupation probability

of the states on the left electrode and 1 − f (Ek + eV) to characterize the availability for

tunneling on the right:

ΓL→R =
2π

h̄
|T|2

∫ ∞

−∞
dEkρL(Ek)ρR(Ek + eV) f (Ek)(1 − f (Ek + eV)) (5.7)

We can calculate a similar rate from right to left by switching the sign of the voltage:

ΓR→L =
2π

h̄
|T|2

∫ ∞

−∞
dEkρL(Ek)ρR(Ek − eV) f (Ek)(1 − f (Ek − eV)) (5.8)

=
2π

h̄
|T|2

∫ ∞

−∞
dEkρL(Ek + eV)ρR(Ek) f (Ek + eV)(1 − f (Ek)). (5.9)

Further, let us assume that the metals have roughly featureless densities of states so that

ρi(E) ≃ ρi(E + eV) over the small range of voltage applied. Then, the net flow of charge

is proportional to the difference of the two rates: I = e(ΓL→R − ΓR→L). This leads to

I(V) =
2πe

h̄
|T|2ρL(EF)ρR(EF)

∫ ∞

−∞
dEk( f (Ek)− f (Ek + eV)). (5.10)

The final integral is exactly eV regardless of temperature, leading to

I(V) =
2πe2

h̄
|T|2ρL(EF)ρR(EF)V (5.11)
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which resembles Ohm’s law with

Rtun =
h̄

2πe2|T|2ρL(EF)ρR(EF)
. (5.12)

5.1.3 Tunneling into Something Interesting

Measuring ohmic conductance between two metals is not that interesting. Typically, we

make one electrode a featureless metal and the other an interesting system with nontrivial

density of states ρ(E) over the bias range considered. If we return to our previous expres-

sion for ΓL→R we can let the left electrode be metallic such that ρL(E) ≃ ρL(E + eV). Then

we get

ΓL→R =
2π

h̄
|T|2ρL(EF)

∫ ∞

−∞
dEkρR(Ek + eV) f (Ek)(1 − f (Ek + eV)). (5.13)

If we take the zero-temperature limit, the product f (Ek)(1 − f (Ek + eV)) becomes the

product of two step functions. Physically this corresponds to the situation in which no

states above EF,left are occupied on the left and no states above EF,right are occupied on

the right. The only states which are available for tunneling are the ones within eV above

EF,right. Therefore

ΓL→R =
2π

h̄
|T|2ρL(EF)

∫ eV

0
dEkρR(Ek). (5.14)

By a similar logic, in the zero-temperature limit there can be no tunneling from right to

left, ΓR→L = 0, due to the fact that all states below EF,right on the right are also occupied

on the left. Then the tunneling current is given by

I = eΓL→R =
2πe

h̄
|T|2ρL(EF)

∫ eV

0
dEkρR(Ek). (5.15)
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By taking a derivative with respect to the voltage V, the conductance is proportional to

the density of states on the right at excitation eV:

∂I
∂V

(V) =
2πe2

h̄
|T|2ρL(EF)ρR(eV) (5.16)

Provided the tunneling matrix element T and the metallic density of states ρL(EF) remain

constant as voltage is applied, ∂I/∂V ∝ ρR(eV) at all values of V.

5.1.4 Tunneling Impedances

Planar electron tunneling schemes generally work well for materials which have very

high in-plane conductivity. For example, some of the essential features of the Bardeen–

Cooper–Schrieffer theory of superconductivity, such as the size of the energy gap, were

first verified by electron tunneling measurements [102]. Underlying such results is the

(valid) assumption that the in-plane resistance of a metal–insulator–superconductor tun-

neling junction is very low in comparison to the tunneling resistance. At low tempera-

tures, the in-plane resistance of pure metals is extremely low due to the large density of

states and suppression of available phonons. Similarly, the in-plane resistance is exactly

zero for DC voltages across superconductors. The high-temperature tunneling resistances

in the samples measured in reference [102] were only around 100 Ω, but the extremely

small in-plane resistance implied that the tunneling current was dominated by the tun-

neling impedance.

It is useful to think of the tunneling event as being associated with some spectral

impedance Rtun which describes the availability of charge states at an energy E away

from the Fermi level. After the charge has entered the material via tunneling at a high en-

ergy, the newly created quasiparticle must relax through scattering with other electrons,

phonons, etc. in order to lose excess energy and equilibrate with the Fermi level below.

Once at the Fermi level, in-plane voltages must drag the charge through the sample’s lat-
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eral extent (Rin-plane) into an ohmic contact in order to be measured by a current amplifier.

The chain of events is depicted in Figure 5-3. Whenever Rtun . Rin-plane, the tunneling

current can no longer be faithfully attributed to the tunneling density of states. This com-

petition between Rtun and Rin-plane is particularly relevant when studying the tunneling

density of states in quantum Hall system where the in-plane resistance oscillates rapidly

as a function of the carrier density and magnetic field.

b)a)

V < 0

I

V Rtunnel

Rin-plane

I

Figure 5-3: Illustration of tunneling, relaxation, and in-plane transport a) An electron
tunnels from the left electrode to the right at energy eV (black arrow). It must then relax
to the Fermi level (red) before being pulled out through the plane of the right electrode
(black arrow) to an ammeter located far away. b) An approximation of the tunneling
measurement treats the tunneling event and its subsequent in-plane transport as separate
impedances Rtun and Rin-plane.

In general, whenever the Fermi level lies in an energy gap, Rin-plane is potentially large

and prevents the study of highly degenerate excited states with relatively small Rtun.

Additionally, we can picture an interacting electronic system which has strong density-

dependence. Take the example of a Mott insulator as depicted in Figure 4-2. In order

to verify that an interacting energy gap emerges at half-filling of the conduction band,

it is essential to show that the energy gap in the conduction band only occurs at half-

filling. It may be useful to place the Fermi level in the band gap where there should be no

relevant electron–electron interactions. By tunneling up to the half-filling state, the lack

of a gap in the tunneling density of states, coupled with the evidence of a gap at the Fermi

level while at half-filling of the conduction band, would constitute strong evidence for a
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Mott insulator phase. Such measurements are exceedingly difficult due to the in-plane

resistivity of gapped phases.

5.2 Contactless Pulsed Tunneling Spectroscopy

In an effort to sidestep the limitations of traditional planar tunneling, an alternative ap-

proach utilizing a capacitive sample geometry has been developed (described below).

The technique is known as time-domain capacitance spectroscopy, or TDCS, and has

been described extensively in the theses of Ho Bun Chan [103], who initiated the tech-

nique, and especially Oliver Dial [104], who developed the majority of the software and

hardware that are essential for making the technique feasible. For a more thorough in-

troduction to TDCS and its application to semiconductor quantum wells, references [103]

and [104] are excellent resources. Recently, there has been interest in studying exfoliable

transition metal dichalcogenides, high-Tc superconductors, ferromagnets, and other air-

sensitive layered materials for applications such as miniaturizing the field-effect transis-

tor and realizing Majorana zero modes for quantum braiding applications. One common

challenge to studying these materials is making reliable ohmic contact before the material

oxidizes and degrades (which can happen within minutes under ambient conditions). In

an effort to emphasize the contactless nature of TDCS, it has recently been rebranded as

contactless pulsed tunneling spectroscopy, or CPTS. Both terms can be used interchangeably

and we will use the term CPTS in the remainder of this thesis.

5.2.1 CPTS Geometry

The previous discussion highlighted the challenges that in-plane charge motion poses to

measurements of the tunneling impedance, effectively convolving the excited state spec-

trum with Fermi-level properties. The obvious solution is to remove the in-plane charge

motion by isolating the two-dimensional electron system between metal plates without
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2-D electron system (graphene)

Layered insulator (hBN)

Metal electrode (gold or graphite)

a)

b)

Figure 5-4: Diagram of CPTS sample geometry a) A two-dimensional electron system
(gray) is isolated from a nearby metal tunneling electrode (gold) by a thin insulating bar-
rier (pink). The two-dimensional system is also isolated from a far metal gate (gold) by
a thick blocking barrier (pink). In this example, hexagonal boron nitride (hBN) is both
the tunneling barrier and dielectric blocking barrier. We consider the case of monolayer
graphene as the two-dimensional system under study. b) At zero voltage across the tun-
nel structure, the graphene is in equilibrium with the tunnel electrode.
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an ohmic contact. One metal plate serves as a tunneling electrode, which is separated by a

thin insulating barrier that is typically hexagonal boron nitride, but in principle could be

any van der Waals insulator such as molybdenum disulfide. For hexagonal boron nitride,

typical thicknesses are ∼1 nm. Although the system is isolated from direct contact with

the metal electrodes, it remains tunnel-coupled. The tunneling barrier is characterized

by an associated RC charging time. At times t ≫ RC, the electrode and two-dimensional

electron system reach equilibrium. In this way, a voltage across the outer metal electrodes

can induce charge to enter or exit the two-dimensional system.

5.2.2 Measurement Scheme

The basic measurement scheme consists of applying a sudden voltage pulse across the

outer metal electrodes and monitoring the voltage induced by the tunneling charge. At

t = 0 after application of the voltage difference across the metallic plates, the electrode

and two-dimensional electron system are suddenly disequilibrated as shown in panel a

of Figure 5-5. At t > 0, charge enters (or exits) the two-dimensional electron system in

order to equilibrate as shown in panel b. Finally, as t → ∞ in panel c, the two systems

reach equilibrium across the tunneling barrier, effectively increasing the charge density

in the two-dimensional electron system.

In practice, we cannot access the tunneling charge directly since the sample is isolated

on either side. Instead, as the sample charges up, we monitor the image charge that ac-

cumulates on the opposite metal plate as a result of the displacement current through the

capacitor. At t = 0, consider a voltage pulse of size V0 applied across the metal elec-

trodes. Although there is no tuneling current, there is an instantaneous charge which

develops on the far electrode as a result of the geometric capacitance of the tunneling ca-

pacitor. Over a long time t ≫ RC, charge tunneling equilibrates the near metal electrode

and two-dimensional electron system, causing a proportional rise in the image charge in-

duced on the far electrode. In order to subtract the constant background charge arising
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Figure 5-5: A voltage applied across the CPTS structure induces charge to tunnel a) At
t = 0, the full structure is disequilibrated by the sudden voltage pulse. Charge Qtun(t)
begins to tunnel into the available states in the graphene layer. b) After some time t ≃ RC
has passed, an appreciable amount of charge has entered the graphene layer. c) After
t ≫ RC, the tunnel electrode and graphene are in equilibrium and the graphene has been
charged to a new carrier density.
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Rtun

Ctun

Cblock

Figure 5-6: Schematic of CPTS sample geometry showing the tunnel barrier as forming
a parallel RC structure characterized by Rtun and Ctun as well as the blocking structure
forming a capacitor Cblock.

from the geometric capacitance, a voltage pulse of the opposite polarity is applied to a

reference capacitor in a bridge configuration in the same basic scheme as described in

Chapter 3 for capacitance measurements. This allows the charging signal to be measured

with improved dynamic range.

Converting from Charge to Tunneling Density of States

After measuring a charging pulse, taking a time-derivative of Q(t) gives a quantity pro-

portional to the tunneling current Itun(t). Although this entire curve at all times is pro-

portional to the tunneling density of states, it is difficult to utilize the portions beyond

the t → 0 limit. As the two-dimensional electron system fills with charge, both the carrier

density as well as the tunneling energy change in a complicated, mutually-dependent

fashion. Thus, only the very initial portion of the charging curve Q(t) is used for extrac-

tion of tunneling current. This initial portion of the Q(t) curve represents the tunneling

current of the first electrons which enter the two-dimensional electron system at equilib-

rium. If we measure Q(t) for one voltage pulse of height V0, then after differentiating

with respect to time we get I(V0). We can repeat this at various pulse heights V to map

out an I(V) curve. Taking another derivative, this time with respect to voltage, allows
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extraction of the tunneling density of states ∂I/∂V.

5.3 Application to van der Waals Materials

In previous implementations, CPTS was utilized to study semiconductor quantum wells

in GaAs/AlAs heterostructures. The fabrication of quantum wells by molecular beam

epitaxy easily achieves uniform, defect-free tunnel barriers on lateral length scales of

100 µm. This allows the ultimate lateral area of the device to be on the order of 20 000 µm2.

The situation is much less forgiving with van der Waals heterostructures. Although many

research groups can achieve heterostructures on the order of 10 − 100 µm, the use of

hexagonal boron nitride tunneling barriers severely limits the ultimate device size. Typi-

cally, hexagonal boron nitride flakes of tunneling-thickness (3 − 5 layers) that have been

isolated with mechanical exfoliation tend to be much smaller in lateral extent compared

to thicker flakes (such as those used for the dielectric blocking layer). Additionally, when

forming heterostructures, thin hexagonal boron nitride tends to wrinkle and tear, reduc-

ing the effective device size after isolation of an ultraclean section with no mechanical

stacking defects. The CPTS devices described in the next chapter are on the order of a few

square microns in lateral area, representing a reduction in the tunneling current of about

10000 as compared to GaAs quantum wells. However, the measurement is not quite as

dire as these numbers would lead one to believe. While the total tunneling current de-

creases dramatically, so does the size of the shunt capacitance, meaning that the voltage

induced on the blocking electrode is not reduced by the same factor of 10000. For van der

Waals heterostructures, the shunting capacitance is on the order of 100 fF as compared

to 20 pF for semiconductor devices, leading to an ultimate reduction in the measurement

signal of roughly 50. Utilizing low-temperature amplifiers with reduced input shunt ca-

pacitance as well as long averaging times can make measurement of small, micron-scale

devices feasible.
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Chapter 6

Tunneling Spectroscopy of Monolayer

Graphene in the Quantum Hall Regime

In this chapter, we will discuss the application of the contactless pulsed tunneling spec-

troscopy (CPTS) described in Chapter 5 to monolayer graphene. The tunneling geome-

try consists of the CPTS capacitor structure described previously. A graphite tunneling

probe is tunnel-coupled to monolayer graphene by a thin hexagonal boron nitride bar-

rier. An isolated metallic gate (Cr/Au) is separated from the monolayer graphene by a

thick hexagonal boron nitride blocking dielectric. The fabrication process will be briefly

reviewed below in section 6.1.

6.1 Fabrication

6.1.1 Hexagonal Boron Nitride

Tunneling techniques are only as good as their tunneling barriers. The relative impor-

tance of the barrier lies in the exponential sensitivity of tunneling to both barrier height

and width. In Chapter 5 we saw that the transmission of an incident electron of energy E

on a rectangular barrier of width 2a and height V0 was proportional to e−4a
√

2m(V0−E)/h̄2
.
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If the barrier thickness 2a is too wide or the barrier height V0 too large, then the tunnel-

coupling will be so weak that any tunneling current will be immeasurably small. In the

extreme limit, the insulator forms a mere dielectric layer. On the other hand, if the bar-

rier is too transparent, the tunnel-coupling will lead to hybridization of the two electronic

systems, strongly perturbing the innate properties of each system in isolation. Moreover,

even after an ideal barrier height and width have been chosen, care must be taken to

ensure that the tunneling transmission probability is uniform across the lateral extent of

the barrier. If there are pinholes or other sources of inhomogeneity that either weaken

the barrier height or decrease its effective width, the tunneling behavior will be exponen-

tially dominated by such low resistance pathways and effectively shunt the remainder

of the tunneling barrier. Finally, the interface between the tunneling barrier and two-

dimensional electron system (2DES) must preserve the pristine nature of the 2DES. Inter-

facial roughness due to strain, dislocations, etc. may reduce the quality of the 2DES to a

prohibitive limit. These restrictions severely limit the availability of appropriate materials

for tunneling.

Just as GaAs quantum wells can be well lattice-matched to AlAs-based tunneling bar-

riers [105], graphene creates an exceptionally clean interface with hexagonal boron nitride

(hBN) which was first identified as a superb dielectric and encapsulation material for

monolayer graphene in 2010 [9]. hBN is structurally equivalent to monolayer graphene

but has alternating boron and nitrogen atoms on the A and B sublattices. hBN satisfies

many of the previously mentioned requirements for a good tunnel barrier. It tends to

very chemically stable with few dangling bonds at room temperature and under ambient

conditions, leading to reduced charge traps and surface roughness as compared to SiO2

substrates [106, 107]. In 2011, hBN was identified as a promising van der Waals tunneling

barrier based on conductive atomic force microscopy [108, 109] and planar tunneling mea-

surements [109]. The π bands of hbN are associated with a band gap around 5.2 − 5.9 eV

[110–112]. The valence band is offset from the Dirac point of graphene to create a tunnel
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barrier of about 1.5 eV [109, 113]. Because hBN is also an excellent dielectric, we build our

tunneling structures from both thin hBN in the 3 − 5 layer range as well as ∼5 nm thick

hBN for the dielectric layer.

6.1.2 Graphite Tunnel Probes

In the devices discussed in this chapter, we have utilized graphite flakes that are roughly

5 − 15 nm thick. Graphite, as opposed to an evaporated metal such as gold, was chosen

due to its ability to make atomically flat, precise heterostructures. Additionally, it has

no work function mismatch with monolayer graphene, making the two materials well

suited to one another. One drawback of graphite is that during fabrication the graphene

is not explicitly aligned with the graphite crystal axes (which are typically not known

from basic optical and atomic force microscope techniques) when forming the tunneling

heterostructure. At low tunneling energy, this means that the Fermi surface of graphite

(centered around similar K and K′ points like monolayer or bilayer graphene) may be dis-

placed by approximately Kθ where K = 4π
3
√

3a
where a is the carbon–carbon bond length of

graphene and θ is rotation angle between the crystal axes of the monolayer graphene and

graphite tunnel probe. If planar momentum is conserved during the tunneling event,

the separation of the Fermi surfaces may suppress tunneling at low energies and car-

rier densities. An alternative approach would be to use evaporated metals which form

thin polycrystalline films. Although not as atomically flat as graphite, the large number

of randomly oriented metal nanocrystals effectively averages over all crystal momenta,

eliminating momentum conservation as a limitation.

6.2 Tunneling Capacitance

In the CPTS sample geometry, a slow AC excitation relative to the rolloff frequency of

the tunnel capacitor RCtun allows the graphite tunnel probe and graphene to remain in
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Vex
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Cblock

Cstd
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δVbal

Figure 6-1: Tunneling capacitance schematic Using the CPTS geometry, an AC excitation
Vex at a frequency f ≪ RCtun where RCtun describes the typical rolloff frequency of the
tunnel capacitor causes the tunnel probe and two-dimensional electron system to be in
equilibrium. This allows the capacitance to be measured in the thermodynamic limit by
zero-bias tunneling. In this geometry, there is no in-plane charge motion.

equilibrium throughout each cycle of the excitation Vex. At low frequencies, the capac-

itance can be measured in a similar fashion to the laterally contacted devices discussed

in Chapter 3 and Chapter 4. Here, however, the impedance of the sample is no longer a

series resistor and capacitor. It consists of the blocking capacitor Cblock in series with the

parallel Rtun and Ctun associated with the tunneling barrier as shown in Figure 6-1. In this

configuration, the out-of-phase channel of the capacitance bridge involves the tunneling

resistance which is proportional to the single-particle density of states at zero bias. Be-

cause there is no in-plane charge motion, the out-of-phase component no longer describes

transport features.

The tunneling capacitance for the device named “Pulsing3” is shown in Figure 6-2.

The carrier density is varied on the horizontal axis with electrons (holes) being added at

positive (negative) gate voltages. Charge neutrality is around Vgate = 0.25 V. A Landau

fan emerges from charge neutrality as magnetic field is increased. Oscillations in the

capacitance near ν = ±2 are resolved at fields below 1 T, indicating the high quality of

the device. At higher magnetic fields, Landau levels up to N = ±7 are clearly visible

before blurring together due to broadening at high carrier density. Figure 6-3 shows line

cuts from Figure 6-2 at constant magnetic field. The zero-field data display a characteristic

depression in the total capacitance around charge neutrality due to the vanishing of the
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Figure 6-2: Tunneling capacitance of device Pulsing3 is plotted against gate voltage and
magnetic field. A characteristic Landau fan for monolayer graphene emerges from a
Dirac-like dip in the capacitance at zero field. The electrons (holes) are added at posi-
tive (negative) gate voltages. Landau levels ranging from N = −7 to N = 7 are clearly
resolved. There are no signs of broken symmetry states arising from exchange gaps, per-
haps due to the close proximity of the tunnel probe which may screen electron–electron
interactions. A 9 mV excitation was used at 3 kHz in a helium-3 cryostat at 280 mK.
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Fermi surface at the Dirac point. Landau quantization is evident at higher magnetic field.
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Figure 6-3: Tunneling capacitance line cuts at constant magnetic field are plotted for
B = 0, 4.6, 9 T. The curves have been shifted vertically for clarity. The zero-field data
shows a clear Dirac-like cusp in the capacitance related to the strong reduction in the ther-
modynamic density of states around charge neutrality. At higher magnetic field quantum
oscillations related to Landau quantization are visible.

6.3 CPTS in Monolayer Graphene

In Figure 6-4 we probe the tunneling spectrum of monolayer graphene in the quantum

Hall regime at 7 T and 280 mK. The gate voltage is varied on the horizontal axis, with

electron-doping associated with positive gate voltage (to the right). The vertical axis

plots the tunneling energy away from the Fermi level. Tunneling upwards in energy

away from E = 0 represents tunneling an electron into empty excited states. Likewise,

tunneling downwards in energy represents tunneling an electron out of the graphene into

an available state in the tunneling electrode. To the left of the plot, a sharp, bright fea-
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Figure 6-4: Tunneling spectrum of monolayer graphene at 7 T. Tunneling energies up to
about 20 meV are probed over a range of gate voltage corresponding to the N = 2 Landau
level approaching the Fermi level. The Landau level is pulled down in energy at low gate
voltage and pinned to the Fermi level as it fills. After completely filling, it is pulled
beneath the Fermi level as the N = 3 level is pulled down. The Landau level experiences
several sharp, unexpected splittings whenever it is away from the Fermi level. While
pinned to the Fermi level, it blurs due to decreased quasiparticle lifetime.
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ture (representing large tunneling density of states) is seen moving downward in energy

towards the Fermi level as electrons are added to the system. This bright feature is the

empty N = 2 Landau level of graphene. Around 1.7 V the Landau level becomes pinned

around the Fermi level while its massive degeneracy is filled with electrons. After com-

pletely filling, the Landau level is then pulled beneath the Fermi level as the next N = 3

Landau level approaches the Fermi level from above.

Perhaps the most visually striking feature of the plot is the sharp density of states

suppression around the Fermi level. Although a tunneling gap around the Fermi level is

expected from Coulomb repulsion in high magnetic field [114] and has been observed ex-

tensively in similar tunneling experiments [104, 115], the tunneling gap typically shows

strong dependence on the carrier density and magnetic field. In contrast, we observe

a similar gap at all carrier densities and magnetic fields. Density-independent tunnel-

ing gaps of order 50 meV have been observed in some scanning tunneling microscopy

studies on graphene [116], however, the tunneling gap observed here is much smaller,

corresponding to ∼4 meV full width at half max. Warming the sample to as little as 5 K

strongly suppresses the gap as shown in the temperature dependence in Figure 6-5.

One of the most unusual features of the N = 2 Landau level in Figure 6-4 is the sharp

splittings which occur when the Landau level is away from the Fermi level at positive and

negative energies. Although Landau levels in graphene are expected to form exchange

gaps which polarize the spin and valley degrees of freedom [52], the energy scale for

such effects is around e2/εlB ∼ 30 meV which is outside the range of our bias window

and much larger than the ∼4 meV splitting observed. Furthermore, the splitting due to

exchange is expected only to play a role when Landau levels are pinned to the Fermi

level because here, the partial filling of the Landau level encourages polarization of the

non-orbital degrees of freedom in order to minimize spatial overlap of the wave function.

When the Landau level is either completely empty or completely full, there is no freedom

to rearrange the non-orbital degrees of freedom and no exchange gap forms. It is unclear
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Figure 6-5: The tunneling gap in graphite–graphene tunneling shows strong temper-
ature dependence. Upon warming from base temperature to 5 K, the tunneling gap of
around 4 meV is strongly suppressed.
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what causes the splittings observed in our data. The Zeeman energy scale gµBB is around

0.8 meV for a bare electron g factor at 7 T which is too small to account for the size of

the observed splitting. Even more intriguing is the field-evolution of the splitting (and

the behavior of the Landau level at the Fermi level). Upon changing magnetic field by

as little as 0.25 T, the spectrum rapidly evolves as shown in Figure 6-6. Splittings in the

Landau level away from the Fermi level appear to merge and separate upon changing the

magnetic field.

The field-dependence of the N = 2 Landau level is more clearly depicted by fixing

the gate voltage and varying the magnetic field. In panel a of Figure 6-7 multiple Landau

levels are seen at high energy and brought down to the Fermi level as the magnetic field

decreases. Near the Fermi level, several Landau levels split and merge. In panel b, the

splitting of the N = 2 Landau level beneath the Fermi level rapidly changes as magnetic

field increases.
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Figure 6-6: The N = 2 Landau level changes rapidly with magnetic field a) 6 T b) 6.25 T
c) 6.5 T d) 6.75 T
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level, and split. b) The splitting in the N = 2 Landau level beneath the Fermi level rapidly
changes with magnetic field.
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Chapter 7

Outlook

In this thesis, we have discussed two measurement techniques to study van der Waals

systems: capacitance sensing in Chapter 3 and contactless time-domain tunneling in

Chapter 5. The ability to access the electronic compressibility of magic-angle graphene

superlattices allowed us to measure thermodynamic quantities associated with strongly

correlated phases at zero magnetic field in addition to exploring the magnetic field de-

pendence up to the quantum Hall regime in Chapter 4. In Chapter 6 we saw the first

application of contactless pulsed tunneling into a van der Waals system where the quan-

tum Hall regime was studied in monolayer graphene without any in-plane transport and

with an energy resolution which has not been possible with conventional techniques like

scanning tunneling spectroscopy.

There are many promising directions for both techniques to explore in the near fu-

ture. In addition to magic-angle twisted bilayer graphene, there has been a general ex-

plosion of research efforts on twistronics, or the explicit fabrication of twisted van der

Waals heterostructures. There are indications of superconductivity and correlated insu-

lating phases in twisted Bernal-stacked bilayer graphene (two Bernal bilayers twisted

together) [117–119] as well as strong displacement-field tunability in dual-gated twisted

bilayer (two monolayers) graphene [76, 77]. Additionally, similar flat band physics with

183



displacement-field tunable correlated insulation has been seen in aligned ABC trilayer

graphene on hexagonal boron nitride [120]. Although there has been less reproducibil-

ity in the ABC trilayer system, it is a promising avenue towards flat band physics due

to its more mechanically stable arrangement. Because twisted bilayer graphene at low

twist angles is extremely close to Bernal stacking, annealing magic-angle twisted bilayer

samples frequently causes the two monolayers of graphene to rotate back to zero rotation

in order to minimize the ionic potential energy. In the case of ABC trilayer graphene,

because it is not lattice-matched to the underlying hexagonal boron nitride, it does not

require a relative rotation to form a moiré potential, allowing it to be annealed at higher

temperature and potentially offering a cleaner platform. All of these systems have been

characterized by electron transport measurements but lack thermodynamic probes. Un-

derstanding the evolution of compressibility with displacement field and in a variety of

rotated structures is likely to be a worthwhile effort. Furthermore, additional transport

measurements on twisted bilayer graphene at low twist angle, but away from the magic

angle, have revealed strong electron–phonon coupling over a range of low twist angle

[78]. This points to the necessity of performing measurements on twist angles away from

the magic angles in order to reveal the physics that is generic to small rotation and which

features are unique to the magic angles [16]. Contactless planar tunneling measurements

would also be invaluable in this effort. The ability to study the evolution of the insulating

phases at fractional filling as they are tuned into the superconducting regime would be a

powerful probe of the interaction physics driving the emergence of exotic phases.

Additionally, there are other classes of materials which would be fascinating to study

with compressibility and tunneling. Recently, few-layer bismuth strontium calcium cop-

per oxide was isolated with high quality crystals, opening up the field of van der Waals

materials to traditional high-Tc platforms [121]. Studying the carrier-density and temper-

ature dependence of two-dimensional superconductors would be a worthwhile venture.

Though it is well understood that superconductors form energy gaps in the tunneling
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density of states, it is less clear what should happen to the thermodynamic density of

states, particularly in the two-dimensional limit. Compressibility could illuminate this

interesting topic and tunneling would provide a useful guidepost by allowing direct com-

parison of the compressibility to the single-particle density of states.
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Appendix A

Fabrication

A.1 Exfoliation and Optical Identification

The van der Waals materials used in this work were isolated by manually exfoliating

macroscopic crystals of graphite or hexagonal boron nitride with blue semiconductor

dicing tape (Ultron Systems 1009R). The tape was subsequently placed into firm contact

with a clean Si/SiO2 substrate. Substrates were prepared by sonicating diced chips first

in acetone, then in isopropanol, and finally blow-drying with dry nitrogen gas. Solvent-

cleaned chips were then annealed in an approximate vacuum environment at 500 ∘C for

about 10 min in a rapid thermal annealer in order to passivate the surface.

Candidate flakes were manually identified with optical microscopy by color contrast

of the van der Waals flakes against the silicon oxide background as shown in Figure A-1.

Candiate hexagonal boron nitride and graphite flakes were thermally annealed in vac-

uum at 500 ∘C for about 10 min. Graphene was not annealed to prevent flakes from de-

laminating and rolling up. Candidate graphite, graphene, and hexagonal boron nitride

flakes were examined with atomic force microscope to verify that there were no crystal

defects or adsorbed contamination.
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Figure A-1: Examples of exfoliated van der Waals Materials (Left) Exfoliated graphite
shows a terraced structure. The region with the weakest color contrast is monolayer
graphene. (Right) Exfoliated hexagonal boron nitride also shows a terraced structure.
The purple region is the thinnest (about 12 nm). The white scale bar in both images is
20 µm.

A.2 Dry Transfer Technique

Suitable flakes were manually stacked to form heterostructures using a polymer-based

transfer technique [10]. A polymer film is first made by dissolving poly(bisphenol A

carbonate) (PC) crystals in chloroform (6% by weight) and spreading a droplet between

two clean glass slides to create a thin coating. After curing in air for a few minutes, the

PC polymer may be cut with a sharp blade and transferred onto a suitable surface. The

PC film was placed on top of a polydimethylsiloxane (PDMS) “stamp” situated on the

end of a glass slide. The polymer stack is controlled by a micro-manipulator at an optical

microscope with a long working distance lens. Van der Waals flakes can be picked up

by first lowering the polymer stack onto the silicon wafer to make contact away from the

flake of interest. Applying heat to the silicon chip causes the PDMS to expand, allowing

the waveform of the PC film to slowly approach the desired flake. Once the PC film

covers the flake, the chip is cooled down, and the polymer stack is retracted with the van

der Waals flake attached as illustrated in Figure A-2.

Once a suitable flake is picked up by the polymer film (typically hexagonal boron

nitride), additional flakes can be picked up by using the attractive van der Waals forces

between any two flakes in contact as shown in Figure A-3. Many layers can eventually be
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glass slide PDMS

PC

flake

Si/SiO2

a)

b)

c)

Figure A-2: Illustration of dry polymer transfer technique a) The van der Waals flake
is approached by the polymer stack. b) Heating the chip causes the PDMS to expand
and slowly cover the flake. c) After cooling, the polymer stack is retracted with the flake
firmly attached to the underlying polymer film.
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built. Afterwards, the stack is released onto a final flake (perhaps graphite), local metal

gate, or silicon oxide substrate. This final step is achieved by placing the polymer stack

in firm contact with the destination surface, heating to the melting point of PC (about

150 ∘C), and retracting the glass slide. The PC film then delaminates from the PDMS. The

PC film can then be dissolved in chloroform or other solvents, leaving behind the van der

Waals heterostructure. The final stack can then be thermally annealed and characterized

with atomic force microscopy.
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a)

b)

c)

Figure A-3: An additional flake can be picked up using the van der Waals forces be-
tween the two flakes a) The substrate flake (pink) on the polymer film approaches the
flake to be picked up (gray). b) Van der Waals forces between the flakes bond them to-
gether strongly. c) Picking up the transer slide results in a stack of two flakes.
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A.3 Electron-Beam Lithography

In order to etch the resulting heterostructures and make electrical contact, electron-beam

lithography is utilized to create masks for etching and metallization. Typically, exposure

was carried out on an Elionix ELS-7000 with a 100 keV accelerating voltage. The following

recipe utilizing a poly(methyl methacrylate) (PMMA) resist was used extensively.

A.3.1 PMMA Resist Recipe

1. Spin PMMA 950 A4 at 4000 rpm for 1 min.

2. Bake chip at 180 ∘C for 10 min.

3. Expose pattern using Elionix.

4. Development:

(a) Prepare 3 to 1 deionized water to isopropanol by weight in a clean glass beaker.

(b) Place beaker with solution in an ice bath for at least 10 min.

(c) While holding chip in tweezers, agitate gently in the cold solution for 2 min.

(d) Immediately blow-dry with dry nitrogen gas.

A.4 Reactive Ion Etching

In order to remove unwanted portions of the layer-transferred heterostructure, electron-

beam lithography was first utilized to create a metallization mask from PMMA. A Cr/Au

top gate was then defined using thermal evaporation. The gold top gate then served as

the etch mask. Etching through graphite and graphene was achieved with an O2 plasma

while etching through hexagonal boron nitride required a fluoroform plasma. For devices

with an underlying graphite back gate, the device outline was defined with a substantial

192



fluoroform etch to remove all encapsulating hexagonal boron nitride (as well as mono-

layer graphene) outside the top gate. The graphite was not significantly affected because

fluoroform etches carbon-based materials very slowly. Any unwanted graphite was re-

moved with a final O2 etch with a double-layer PMMA etch mask. Conventional metallic

contact was then made to the graphite while one-dimensional edge-contacts were made

to the encapsulated graphene (see below).

A.5 Metallization

Graphite back gates were contacted with a Cr/Au layered thermal evaporation. This

was typically performed at normal incidence. Typically, the chromium sticking layer was

about 5 nm thick while the gold was around 50 nm thick. For contact to encapsulated

graphene-based devices, one-dimensional edge-contacts were utilized [99]. A fresh in-

terface was formed with reactive ion etching. The sample was then quickly loaded into

a thermal evaporator equipped with a rotation stage at an angle of about 10∘ relative to

horizontal. Roughly 5 nm of chromium and 50 nm of gold were evaporated while contin-

uously rotating.

A.6 Rotational Alignment

The sample measured in Chapter 4 were fabricated using a “tear and stack” transfer tech-

nique [17, 18, 37]. The goal is to rip one flake of graphene into two in order to create two

separate crystals of graphene with known lattice orientation. By picking up one flake, ap-

plying a precise rotation to the silicon chip with the remaining flake, and then picking up

the second flake, twisted bilayer graphene can be created with extremely precise control.

This sequence is illustrated in Figure A-4.
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Figure A-4: One flake of graphene is “torn and stacked” to crate twisted bilayer
graphene A piece of hexagonal boron nitride (pink) is suspended from the polymer at-
tached to a glass slide (light gray). Half of the flake of graphene (dark gray) is contacted
by the hexagonal boron nitride. Slowly raising the transfer slide causes the graphene flake
to rip into two. A precise rotation of the substrate allows the second piece of graphene to
be picked up immediately after the first.
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Appendix B

Cryogenic HEMT Amplifiers

The measurements performed in this thesis utilized cryogenic amplification stages placed

on the same chip carrier as the sample. In Chapter 3, we discussed the importance of re-

ducing the input parasitic capacitance in impedance bridge configurations. To reduce the

input shunt capacitance we utilize the Fujitsu FHX35X, an unpackaged high electron mo-

bility transistor (HEMT), as a versatile low temperature amplifier as first implemented in

reference [56]. Though it is often operated with unity or sub-unity voltage gain, it bridges

the large impedance difference presented across the balance point and signal line going

to room temperature, offering substantial power gain. It effectively isolates everything

downstream of the balance point, greatly simplifying the task of measurement.

Vstd

Vex

Cstd

Cex

δVbal

Rbias

Vbias
Rdrain

Vdrain

FHX35X

Figure B-1: The single-stage HEMT amplifier utilizes a Fujitsu FHX35X HEMT in a
common-source configuration. Typically, Rdrain ∼ 1 kΩ and Rbias ∼ 100 MΩ.
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B.1 Single-Stage Design

The basic HEMT amplifier utilizes a single HEMT in a common-source configuration as

shown in Figure B-1. The balance point is formed at the gate of the HEMT. In addition

to the AC excitation that is capacitively coupled to the balance point, a DC voltage is ap-

plied through the resistor Rbias. This DC voltage serves two purposes. First, it allows

us to pinch off the channel of the HEMT so that its operational point is most sensitive.

Second, by defining the DC voltage at the balance point, we can apply DC gate voltages

across our capacitance device, allowing us to tune the carrier density. The bias resistor

Rbias as well as the total capacitance at the balance CΣ = Cex + Cstd + Cpar define the

low-frequency cutoff for the measurement circuit. At measurement frequencies below

RbiasCΣ, the accumulated charge on the balance point (which is synchronous with the ex-

citation) is shunted to ground through Rbias before it can be amplified and carrier to room

temperature. For van der Waals devices, CΣ ∼ 1 pF so we typically set Rbias ∼ 100 MΩ in

order to ensure the rolloff frequency f ∼ 1 kHz. This ensures that we are able to measure

successfully in the 10 − 100 kHz range. Low frequencies are necessary to ensure that the

sample charges on each cycle of the excitation in order to access the compressibility as op-

posed to in-plane conductivity (see Chapter 3 for details). The drain resistance is chosen

so that the output impedance of the HEMT is sufficiently low to drive the signal to room

temperature along the substantial capacitance from the cryostat’s coaxial cabling which

is of order 0.5 nF. The HEMT resistance must satisfy R . 1/2π(100 kHz)(0.5 nF) ∼ 1 kΩ

for a measurement frequency in the 100 kHz range.

B.2 Double-Stage Design

In order to reduce the input shunt capacitance, the FHX35X can be cleaved in half and a

double-stage cryogenic amplifier can be implemented as first described in Misha Brod-

sky’s thesis [122]. The full double-stage circuit is shown in Figure B-2. The cleaved tran-
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sistor has lower input capacitance and can pinched off significantly more than a single-

stage amplifier in order to increase its gain. We also utilize a cleaved transistor in place

of the bias resistor in order to further reduce the shunt capacitance because the cleaved

transistor has less stray capacitance (∼150 fF) than a typical thin film resistor (∼1 pF). The

second stage of the amplifier is simply a conventional single-stage HEMT amplifier uti-

lizing an uncleaved HEMT as described previously. Because the first stage amplifier is

driving a small load (only the components leading up to the uncleaved transistor over a

short wire bond length), it may be pinched off significantly more than the output stage.

This affords additional gain without the effects of output loading discussed previously.

Typically, the value of R1 is chosen around 100 kΩ. R3 is around 1 kΩ in similarity to

the single-stage amplifier. R2 is about 100 MΩ and typically a thin film gold meander

because its stray capacitance is not an issue, unlike at the input of the first stage transis-

tor. The coupling capacitor C1 is around 100 pF. The cleaved transistor cH2 which biases

the gate of the cleaved measurement transistor cH1 is typically pinched off to around

10 − 100 MΩ. The cleaved transistor which forms the biasing resistor for the first-stage

amplifier tends to be the most susceptible to broadcasting noise into the experiment due

to the extreme sensitivity of the DC operation point. Placing cold cryogenic low-pass RC

filters made from conventional surface mount components in-line with both the DC line

going to the gate of the biasing transistor as well as the DC line going to its drain signif-

icantly decreases the noise broadcast into the input of the amplifier in the relevant audio

range.
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Vex

Vstd
Cstd

Cex
cH2

cH1

H

R1

C1

R2
R3

amp

Figure B-2: The double-stage HEMT amplifier utilizes a first stage composed on a
cleaved measurement transistor (cH1) which is pinched off by an additional cleaved tran-
sistor (cH2) in order to reduce the input shunt capacitance as much as possible. The
second stage consists of an uncleaved transistor (H) which drives the signal to the next
amplification stage along a large capacitive cable load.

B.2.1 Cleaving Transistors

Cleaved HEMT

gate

drain

source

Figure B-3: The unpackaged Fujitsu FHX35X can be cleaved in half The HEMT on the
left is a cleaved version of the full, uncleaved HEMT on the right. The gate, source, and
drain are labeled on the uncleaved HEMT. The star indicates where to cleave.

The Fujitsu FHX35X can be easily cleaved with common laboratory supplies as de-

tailed below.

1. Place an uncleaved HEMT facing upwards on a clean glass slide.
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2. Place a small drop of PMMA over the HEMT so that it is completely encased.

3. Wait for the PMMA to cure in air (or on a hot plate set to ∼100 ∘C).

4. Place the glass slide beneath a long working distance microscope—preferably one

designed for work with fine electronics.

5. Pace the tip of a sharp razor blade where the white star is shown in Figure B-3.

6. Pressing the razor down firmly will result in the HEMT cleanly splitting into two

with a reasonably high yield. The encasing PMMA will prevent the cleaved HEMTs

from flying off the glass slide.

7. With tweezers, carefully peel up the PMMA film from the glass slide and place the

entire film into a beaker of acetone which will dissolve the PMMA.

8. Sonicate with both acetone and then isopropanol.

9. The cleaved HEMTs are too small to be easily removed with tweezers. After pitching

the majority of the solvent, dump the remainder onto a clean fabrication wipe and

allow to air dry.

10. The cleaved HEMTs can now be picked up with tweezers and stored for future use.
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