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Abstract

We image charge transport in the quantum Hall effect using a scanning charge ac-
cumulation microscope. Applying a DC bias voltage to the tip induces a highly
resistive ring-shaped incompressible strip (IS) in a very high mobility 2D electron
system (2DES). The IS moves with the tip as it is scanned, and acts as a barrier that
prevents charging of the region under the tip. At certain tip positions, short-range
disorder in the 2DES creates a quantum dot island inside the IS that enables breach-
ing of the IS barrier by means of resonant tunneling through the island. Striking ring
shapes appear in the images that directly reflect the shape of the IS created in the
2DES by the tip.

Through the measurements of leakage across the IS, we extract information about
energy gaps in the quantum Hall system. Varying the magnetic field, the tunneling
resistance of the IS varies significantly, and takes on drastically different values at
different filling factors. Measuring this tunneling resistance provides a unique micro-
scopic probe of energy gaps in the quantum Hall system.

Simulations of the interaction of the tip with the quantum Hall liquid show that
native disorder from remote ionized donors can create the islands. The simulations
predict the shape of the IS created in the 2DES in the presence of disorder, and
comparison of the images with simulation results provides a direct and quantitative
view of the disorder potential of a very high mobility 2DES.

We also draw a connection to bulk transport. At quantum Hall plateaus, electrons
in the bulk are localized by a network of ISs. We have observed that the conductance
across one IS is drastically enhanced by resonant tunneling through quantum dot
islands. Similarly, this resonant tunneling process will dramatically enhance the con-
ductance of certain hopping paths in the localized bulk and could play an important
role in dissipative transport at quantum Hall plateaus.

Thesis Supervisor: Raymond C. Ashoori
Title: Professor
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Chapter 1

Introduction

In the past 25 years, the two-dimensional electron system (2DES) has proven to be

a remarkable system for studying fundamental physics. Studies of the behaviour of

electrons in the 2DES probe the basic concepts from quantum mechanical theory,

and the 2DES is a model system for studying the effects of correlations between

interacting electrons. These properties are exhibited most clearly when the 2DES is

subjected to a very large magnetic field, which results in a phenomena known as the

quantum Hall effect. The 2DES has stimulated an enormous body of experimental

and theoretical work, and the quantum Hall effect has been the subject of two Nobel

prizes in physics.

The goal of this research is to study the physics of the 2DES on a microscopic

scale using a scanning probe microscope. We begin with an overview of the 2DES

and the quantum Hall effect. We then descibe the method we have developed for

studying transport in the quantum Hall effect on a micrscopic level.

1.1 The 2D Electron System and the Quantum

Hall Effect

It was discovered in the 1960s that by squeezing the electrons into a very narrow

10 nm plane strictly restricts the motion of the electrons to two degrees of freedom

19
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Figure 1-1: (a) Quantized plateaus in the Hall resistance observed as a function
gate voltage by von Klitzing in a silicon MOSFET. Adapted from [3]. For this mea-
surement, the gate voltage is swept at constant magnetic field, varying the electron
density. (b) Quantized plateaus in a GaAs heterostructure. In experiments in GaAs
heterostructures, the electron density is typically kept constant and the magnetic field
is swept. Adapted from [4].

associated with motions in the 2D plane [1, 2]. This is acheived due to the effects of

quantum mechanics: the tight confinement produces a wavefuntion in the confined

direction that is restricted to quantized energy levels. At low temperatures, the

spacing between these levels can become smaller than the the thermal energy kT . As

a result, electrons will occupy only the lowest energy level. Although the wavefunction

itself is 3 dimensional, motion of the electrons is restricted only to the two remaining

unconfined directions.

In the late 1970s, a physicist named Klaus von Klitzing had been studying the Hall

resistance of a 2DES at low temperatures in very large magnetic fields. Classically,

applying a magnetic field perpendicular to the current flow in a metal will exert a

Lorentz force on the moving electrons, pushing them to one side of the channel. In

equilibrium, a charge accumulation at the edges of the sample results that creates

an electric field that balances this force. Attaching a voltmeter to the sides of the

sample, we then measure a voltage proportional to the current. The proportionality

20



constant is called the Hall resistance, and is given by [5]:

RH =
B

qns

(1.1)

where q is the charge of the carriers and ns is the sheet concentration. At low mag-

netic fields, the Hall resistance of the 2DES showed the expected behaviour from the

classical formula. At very large magnetic fields and at low temperatures, however,

von Klitzing observed that there the Hall resistance showed deviations from the clas-

sical behavior in the form of flat plateaus. This is shown in figure 1-1. Remarkably,

von Klitzing noticed that the Hall resistance on the plateaus was quantized to a value

that depended only on fundamental physical constants:

RH =
h

Ne2
(1.2)

where N is an integer, e is the electron charge, and h is Plank’s constant. The

ratio h/e2 is the quantum of resistance. The quantization seen in the experiment

was extremely accurate: in the paper [3] announcing the discovery, the accuracy

was better than 1 part per million. Since then, the accuracy has been improved to

better than 1 part per billion. The quantum Hall effect is now used as the official

international resistance standard [6], and plays a fundamental role in the quantum

metrology triangle [7]. For this discovery, von Klitzing was awarded the Nobel prize

in 1985 [8].

Two years before von Klitzing’s discovery, another significant change to the field

of semiconductor physics had occurred. This was the development of the modulation

doping technique by Horst Störmer and collaborators at Bell Labs [9]. It turns out

that this development would have an equally large impact on semiconductor physics.

One of the problems that plagued semiconductors was that they intrinsically have no

free charge carriers, and consequently are insulators at zero temperature. In order to

conduct at low temperatures, they must be “doped” with impurity atoms that carry

an excess electron. The difficulty is that once the dopant atoms release their electron,

they act as charged scattering sites. These charged impurities scatter electrons quite
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Figure 1-2: The 2DES in GaAs. (a) Using molecular beam epitaxy, layers of semi-
conductors with different chemical composition can be grown on top of each other, a
single crystalline layer at a time. This is used to create structure that has a GaAs
layer below an AlGaAs layer. The AlGaAs layer has a larger band gap, leading to a
step in the effective potential electrons see. (b) Electrons from dopants in the AlGaAs
layer fall into the more energetically favorable undoped GaAs layer, where they form
a 2DES at the interface.

strongly, resulting in very poor mobility.

The group at Bell labs used a new crystal growth technique called Molecular Beam

Epitaxy (MBE) [10] to get around this problem. In MBE, a semiconductor crystal

can be grown a single atomic layer at a time. By varying the chemical composition,

epitaxial layers consistent of different semiconductor materials can be grown on top

of each other. Furthermore, by selecting lattice matched semiconductors, this can be

done in a way that produces a perfect crystal with no defects. Using this technique,

the Bell labs group grew a layer of Al1−xGaxAs on top of a GaAs layer, as shown

in figure 1-2(a). Because Al1−xGaxAs has a larger bandgap than GaAs, there is an

offset in the effective potential seen by electron in the crystal at the interface. By

including dopants in the Al1−xGaxAs layer, electrons from the dopants will fall down

into the more energetically favorable GaAs layer, forming a 2DES at the interface.

The innovation is that electrons are now spatially separated from the charged donors,

drastically reducing scattering. In modern GaAs structures like this, mobilities can

exceed 30 × 106 cm2/Vs, corresponding to electron mean free paths on the order

of an astonishing 0.1 mm. The increase in sample quality from this technique lead

to the discovery of the fractional quantum Hall effect, for which Horst shared the

Nobel prize with collaborator Dan Tsui and theorist Robert Laughlin in 1998. The

modulation doping technique has opened up a new realm of semiconductor physics
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Figure 1-3: (a) The transverse (green) and longitudinal (blue) resistance measured in
a GaAs Hall bar at 350 mK. Data taken from [11]. (b) The conductivity σxx calculated
from the data using equation 1.3. At Hall plateaus, the conductivity σxx becomes
extremely small at low temperatures. (c) Direct measurements of the conductivity
can be made in a sample design know as the “Corbino Disk” geometry, shown in
the inset. The data shows σxx measured in such a sample at very low temperatures.
Adapted from [12].

where many-body correlations between electrons play a central role, and in which the

discovery of new many-body states of electrons continues to this day.

1.2 Conductivity in the Quantum Hall Effect

In the previous section, we discussed the remarkable observation that the Hall re-

sistance of a 2DES at large magnetic fields and low temperatures displays plateaus

at universal resistance values associated with fundamental physical constants. The

Hall resitance is found by measuring the transverse voltage Vxy across the sample,

and is related to the transverse component of the conductivity tensor σxy. In order

to understand the origin of these plateaus, we will need to take a careful look at the

behaviour of the diagonal component of the conductivity tensor σxx.

In a Hall bar geometry, σxx can be obtained by measuring both the transverse

voltage Vxy and the longitudinal voltage Vxx in response to an current passed through

the sample. These two measurements will give the matrix elements of the resistivity
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Figure 1-4: (a) In a large magnetic field, electrons occupy quantized energy states
known as Landau levels. These Landau levels have fixed energies, resulting in δ-
function peaks in the density of states. (b) The plateaus in the Hall resistance seen in
the quantum Hall effect can be explained by assuming a disorder-induced broadening
of the Landau level peaks. The broadening creates “localized states” in the tails of
the broadened Landau levels. When the Fermi energy lies in these localized states,
the conductivity σxx vanishes and the Hall resistance is quantized.

tensor ρij. We can calculate the conductivity σxx by inverting the resistivity matrix1:

σxx =
ρxx

ρ2
xx + ρ2

xy

(1.3)

Figure 1-3 shows the Hall resitance and the logitudinal conductivity in the quantum

Hall regime. Particularly striking is that whenever the Hall resistance is on a quan-

tized plateau, the conductivity σxx goes to zero2. The vanishing conductivity plays

a fundamental role in the quantum Hall effect: experimentally, there is a one-to-one

correspondence between the vanishing conductivity σxx and the quantization of the

Hall resitance Rxy. This connection was established on a theoretical basis by Laughlin

[13] using very simple, although subtle, gauge invariance arguments, and also using

different arguments by Halperin [14]. As long as σxx vanishes, the Hall resistance will

be exactly quantized. This raises the question: what causes σxx to go to zero?

To understand this, we must consider the effects of quantum mechanics on elec-

1Alternatively, the conductivity σxx can also be measured directly in sample patterned in the
Corbino geometry (see figure 1-3(c)).

2Note that ρxx measured in a four-terminal geometry also goes to zero, as can be seen in figure
1-3. At large magnetic fields, σxy >> σxx. Inverting the conductivity matrix σij , we get ρxx is
linearly proportional to σxx: ρxx ≈ σxx/σ2

xy. . This is known as the large Hall angle regime. In this
limit, currents are driven predominantly by transverse electric fields.
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trons in large magnetic fields. Classically, an electron that is confined to a 2D plane

and subjected to a perpendicular magnetic field will circle in a closed loop with a

frequency ωc = eB/m, a motion described as a cyclotron orbit. At high magnetic

fields, these orbits become quantized, just as the orbits in an atom are quantized.

These quantized cyclotron orbit states are called Landau levels. As a result of this

quantization, the density of states of the 2DES in a magnetic field will split into

delta-function peaks, as shown in figure 1-4(a). The spacing of the peaks is set by

the cyclotron energy h̄ωc. When we include disorder, these peaks become broadened,

acquiring tails in the the gaps that are associated with localized states, shown in

1-4(b). In the quantum Hall effect, the conductivity σxx vanishes whenever the Fermi

energy lies in this region of localized states. While the quantization is understood, the

details of exactly what these localized states are and how they cause the conductivity

to vanish are still not well understood.

Some information about the nature of the localized states can be obtained by

measuring the temperature dependence of the conductivity σxx. Such temperature

dependent transport measurements in the quantum Hall effect have been the subject

of a large number of experimental investigations [4, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Despite

this large body of work, a comprehensive understanding of the results, particularly

at low temperatures, is still lacking. At high temperatures, σxx shows an activated

behavior, attributed to thermal activation of electrons from the localized states up

into the next Landau level. The conductivity in this regime fits well to a function:

σxx = σ0e
− Ea

kBT (1.4)

The measured activation energy is usually identified as half of the value of the energy

gap separating the two Landau levels: Ea = 1
2
∆E. This is based on the assumption

that at the center of the Hall plateau, the Fermi energy is pinned halfway between

the two levels. The measured ∆E from data at even integer filling factors agrees

reasonably well with h̄ωc when the factor of two is included [8]. Such measurements
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Figure 1-5: Temperature dependence of the conductivity σxx and the resistivity ρxx

in a fractional quantum Hall plateau. At high temperatures, the data fit well to an
activation model, shown by the dashed line. At low temperatures, the conductivity is
enhanced, which is usually attributed to variable-range hopping. Data from integer
quantum Hall plateaus show similar behavior, but with a deviations from activation
starting at about 1K. Reproduced from Boebinger et al. [22].

are also often used as a measure of other energy gaps that do not arise from the

cyclotron energy splitting, such as the exchange-enhanced spin gap [25] and gaps in

the fractional quantum Hall effect [22].

At lower temperatures, the conductivity does not fall as fast as predicted from

the activation model. As shown in figure 1-5, the conductivity in the activation plots

curves upwards at low temperatures. This deviation is usually attributed to the onset

of variable range hopping. In variable range hopping, rather than being activated up

to the next Landau level, an electron in a localized state makes a lateral jump to

an unoccupied state. These jumps can occur over a very large range of distances, as

suggested by the name. Attempts have been made to fit the tail of the conductivity

at low temperatures to both 2D Mott variable range hopping [43, 44]:

σxx = σ0e
−(T0/T )1/3

(1.5)
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and to Efros-Shklovskii variable range hopping [45]:

σxx = σ0e
−(T0/T )1/2

(1.6)

Often, a temperature dependent prefactor σ0(T ) is included. Unfortunately the con-

ductivity does not vary significantly in this temperature range, making it difficult to

differentiate between the two models, or to reliably extract fit parameters. Because

of this, even the phenomenology of transport at low temperatures (< 1K) remains

unclear.

Finally, it is important to mention that the analysis of much of bulk transport data

[33, 34, 35, 36, 37, 38, 39, 40, 41, 42] is based on a model where electrons are local-

ized in single-particle orbits that fallow trajectories of constant energy obtained from

the zero magnetic field disorder potential. These simplifications allow the construc-

tion of sophisticated scaling models of the quantum Hall effect [46]. These models

agree reasonably well with measurements in low mobility samples, typically InGaP

or InGaAs quantum wells where alloy scattering limits mobilities to ∼ 104 cm2/Vs.

One of the problems with these models is that they ignore the modifications to the

self consistent potential by the screening properties of 2D electrons in large magnetic

fields [47, 48, 49, 50, 51]. Including this screening significantly changes the nature of

the localized states [52, 53] and transport [52, 53, 54, 55] in the quantum Hall effect,

particularly in the low disorder limit [52].

1.3 Our work

An understanding of the quantum Hall effect is based fundamentally on the local-

ized states that exist in the 2DES when the Hall resistance is quantized. While the

quantization is understood, the nature of the localized states remains a mystery:

macroscopic transport measurements have failed to draw any clear conclusions as to

the exact nature of localization in the quantum Hall effect.

The purpose of our work is to study the localized states of the quantum Hall
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Figure 1-6: By applying a DC bias to the tip, we perturb the local electron density.
This can cause a phase transition in parts to the 2DES, creating a ring-shaped region
where the electrons are in a different quantum Hall state. We can then probe the
conductivity σxx of this microscopic region by trying to drive charge across it using an
AC excitation. By moving the tip, we can probe how σxx of this microscopic region
varies as it is moved to different places in the sample.

effect on a microscopic scale using a novel charge-sensing scanning probe microscope.

To do this, we will exploit a unique property of the quantum Hall system: at large

magnetic fields, we can create different phases of the 2DES simply by very slightly

changing the local electron density. Applying a DC bias voltage to our tip, we create

a ring shaped region where the electrons are in a different quantum Hall state than

elsewhere in the sample. This is illustrated in figure 1-6. We will then use the same

tip to measure the conductivity of this ring shaped region. This is a totally unique

experiment in two ways: first, the size of the region we are probing is microscopic in

scale. Second, because the region we are probing is tied to the position of the tip,

by moving the tip we can probe the conductivity σxx of microscopic rings formed at

different positions in the sample.

In this thesis, we use this technique to study transport through such microscopic

regions formed from the incompressible states that give rise to localization in the

quantum Hall effect. We will discover that transport through the localized states is

dramatically enhanced by a new transport mechanism consisting of resonant tunneling

through small disorder induced islands. We propose that this resonant transport

plays a significant role in the hopping transport seen at low temperatures in the the

bulk measurements. The results provide a unique view of the microscopic transport

mechanisms in the quantum Hall effect.
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In chapter 2 we give a detailed overview of the measurement technique and the

operation of the scanning probe microscope. In chapter 3, we present our central

results from the scanning probe experiment. Chapter 4 discusses results from a simple

experiment motivated by our discoveries in chapter 3, and in chapter 5 we present

detailed simulations of the interaction of the scanning probe with the disordered

quantum Hall system. We conclude in chapter 6 with a discussion of ideas for future

research directions based on our results.
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Chapter 2

Scanning Charge Accumulation

Imaging

2.1 Scanning Probe Microscope Design

The design of a scanning probe microscope for the study of the 2D electron system

presents some significant challenges. The most significant is due to the fact that most

of the interesting physics of the 2D electron system occurs at very low temperatures

(300 mK and below) and at very large magnetic fields, up to 10T and higher. This

requires that the microscope be designed to fit inside the bore of a superconducting

magnet in a low temperature cryostat. Another challenge is that the length scales

of the 2DES are much larger than the atomic scales studied in STM, and require

scan ranges of 10 µm or larger at cryogenic temperatures. It is also essential that the

microscope have the ability to translate the sample laterally in-situ. The 2D electron

system is easily perturbed by the deposition of charge on the insulating surface of the

sample. Having such translational freedom allows us to walk to a new unperturbed

location if the area we are scanning is disturbed, and opens up the possibility of

studying lithographically defined structures such as quantum dots.

The microscope we use was designed in-house to fit into a top loading Oxford 3He

cryostat with a 32 mm sample space bore that is equipped with a 10T superconducting

magnet. The microscope consists of a brass body that is mounted at the end of a

31



4DBO�5VCF

-&%

$PBYJBM�8JSFT�
UP�5JQ�.PVOU

$IBSHF�4FOTPS
XJUI�5JQ

'MFYJCMF�.BHOFU�
8JSFT�UP�4BNQMF

3BNQT

4BNQMF�1MBUGPSN

4BQQIJSF�#BMM
#FBSJOHT�PO�
UPQ�PG�8BMLJOH�
5SJQPE

4DSFXT�UP�IPME�
SBNQT�EVSJOH�
USBOTQPSU�UP�
DSZPTUBU

.JDSPTDPQF�#PEZ

4BNQMF

4BNQMF�1MBUGPSN�
4FU�4DSFX

$PBYJBM�8JSFT�
UP�4BNQMF

Figure 2-1: A picture of the scanning probe microscope. The sample sits on the
sample platform. This platform is attached to a screw that threads into the brass
“ramps” used in the Besocke coarse approach motor described in figure 2-2. Once
the vertical distance is coarsely adjusted by threading the sample platform in or out
of the ramps, the platform is fixed in place using a set screw. Three coaxial cables
are provided for the charge sensor. Three additional coaxial wires are provided for
the sample, which are connected to the sample platform by 5 cm lengths of 1-mil
urethane coated flexible magnet wire.

top-loading probe from Oxford Instruments. A picture of the microscope is shown in

figure 2-1.

Fundamentally, a scanning probe microscope consists of three separate parts: a

coarse translation motor for large scale movements of the sample, a fine-scale “scan-

ning” translation system that generates small displacements of the tip with respect

to the sample, and a sensor to detect the signal from the interaction of the tip with

32



the sample. Our experiment uses a unique capacitance bridge charge sensor to detect

the presence of electrons in the 2DES far below the surface of the sample, and is

discussed in detail in section 2.2.

The fine-scale translation in our microscope uses a 3 inch long piezoelectric scan

tube. The scan tube consists of a machined tube of piezoelectric ceramic with metal-

ization that defines one electrode on the inner surface of the tube and four quadrant

electrodes on the outer surface. Application of a voltage between the inner and outer

electrodes causes the piezoelectric material to contract or expand in the radial direc-

tion depending on the relative directions of the applied electric field and the fixed

polarization of the piezoelectric ceramic. In addition to the radial deformation, the

tube also elongates in the vertical direction as it deforms in a way that tries not

to change its total volume. The net deformation involves both a compression and

a shear. It is this vertical elongation and contraction that produces the Z-direction

scanning motion in our microscope. X and Y motion are produced by applying op-

posite voltages on opposing quadrant electrodes: this causes one side of the tube to

elongate while the other size contracts, resulting in a bending of the tube producing

lateral motion [56]. The amount of vertical and lateral motion achieved depends on

the piezoelectric coefficients and the geometry of the tube [57, 58]. The piezoelectric

coefficients also depend on temperature, and are typically reduced by a factor of 5

from room temperature to 4K. The geometry of our tube is chosen to give us a 15

µm lateral scan range and a 2.4 µm vertical range at 300 mK.

The coarse translation mechanism is required in order to bring the tip from an

initial distance positioned by eye on the order of ∼ 1mm from the surface to within

a distance comparable to the fine Z-range of the scan tube. Room temperature

microscopes often accomplish this using a stepper motor. In cryogenic applications,

this is impractical due to the limited space available in the cryostat and the low

temperatures. Most cryogenic microscopes use a “stick-slip” translation motor driven

by piezoelectric actuators [59, 60, 61, 62, 63, 64, 65, 66]. The coarse approach motor

we have chosen is a Besocke “beetle” [67, 68] design. Here, the sample is mounted

on a platform threaded into a brass disc that has three “ramps” machined onto the
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Figure 2-2: Pictures of a Besocke coarse approach motor. This motor was built for a
smaller bore microscope than the one used in our experiments. (a) The sample holder
disc with the three ramps machined into the bottom. (b) The sample holder placed
on top of the tripod of piezo tubes. In the experiment, the sample is mounted on top
of the sample holder, and the scan tube comes down from the top.

bottom, as shown in figure 2-2. The ramps are placed on top of a tripod of scan

tubes. The bottom surface of the ramps is polished brass, which sits in contact

with sapphire balls attached to the ends of the tripod tubes. To generate motion, a

sawtooth waveform is applied to the scan tubes. During the slow rising edge of the

sawtooth, the friction force between the sapphire and the brass allows the tubes to

translate their motion to the ramps. On the fast falling edge of the sawtooth, the

friction force is less that the force required to accelerate the inertia of the ramps, and

the two surfaces slip relative to each other. This stick-slip motion allows a net linear

translation of the ramps to be generated from an oscillating motion of the tubes. By

moving the tubes in a tangential direction, a rotation of the sample is achieved with a

vertical translation as the tubes “walk up” the ramps. By applying voltages to move

all three tubes in the same direction, the same motor can be used to achieve a lateral

X-Y translation.

In the Besocke design, the ramps are held in place on the tripod only by gravity.

The normal force between the friction surfaces is determined by the weight of the

ramps, and is generally quite small. As a result of this, the falling edge of the
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sawtooth waveform does not need to be very sharp: typically, a fall time of ∼1-2

ms from 200V works fine. In contrast, the normal forces in clamped designs (for

example in reference [59]) are much higher. These designs need fall times on the

order of 1 µs from 200V, and require much faster electronics, typically employing a

high power FET switching circuit rather than an op-amp to create the falling edge.

One advantage of the of the Besocke design is that the longer fall time produces

much less high-frequency interference noise: in FET switching design, unshielded

cables and capacitive coupling can lead to high frequency transients that can damage

static sensitive devices and even reduce the mobility of the 2D electron system [69].

One significant disadvantage of the Besocke design is that the sample is completely

“loose”, held lightly in place only by gravity. Extreme care must be taken not to

bump the microscope or cryostat at any time to avoid crashing the sample into the

tip.

2.2 Capacitance Bridge Charge Sensor

In order to sense the effects of electrons 1000 Å below the surface of the sample,

we have developed an AC charge sensing technique based on a capacitance bridge

[11, 70, 71]. In a capacitance bridge, the capacitance of a unknown capacitor is

measured against a standard reference. In our experiment, the sample capacitance

is formed between our scanning probe tip and the 2D electron system. The basic

operation of a capacitance bridge is shown in figure 2-3.

For a voltage Vs applied to the sample capacitor and a voltage Vr applied to the

reference capacitor, the voltage V generated at the “center point” of the bridge is

given by

CT V = CsVs + CrVr (2.1)

where C is the total capacitance at the center point of the bridge, and is given by

CT = Cs + Cr + Cg (2.2)
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Figure 2-3: Schematic of a capacitance bridge. Balancing the bridge involves adjusting
the amplitude and phase of Vr so that the voltage V at the center of the bridge is
zero.

where Cg is total stray capacitance to ground. A precise measure of the value of the

sample capacitance can be made by choosing a voltage Vr that is of the opposite sign

(or 180 degrees out of phase, for an AC signal), and of a magnitude such that the

voltage V at the center of the bridge is nulled. Balancing the bridge in this way, the

sample capacitance is given by:

Cs =
CrVr

Vs

(2.3)

A significant advantage of the capacitance bridge is that it allows a precise measure

of the sample capacitance without needing an independent measurement of the shunt

capacitance or of the gain of any amplifiers used to measure V .

In our experiments, we are generally interested in small changes of the sample

capacitance in response to changes in experimental parameters, such as bias voltage,

magnetic field, or tip position. These changes are often very small (≈ 30 aF) compared

to the total capacitance between the tip and the 2D electron system (typically ≈ 40

fF). For these measurements we do not balance the bridge at each point, but instead

use the bridge to null the large background signal. This affords us a significant

technical advantage, since we are now measuring small changes in a small signal

instead of small changes in a very large signal. The remaining out of balance signal

can be directly related to the change in the sample capacitance. Assuming that

these changes ∆Cs are small compared to the total capacitance CT , then equation
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2.1 becomes:

CT (V + ∆V ) = (Cs + ∆Cs)Vs + CrVr (2.4)

If the bridge was initially balanced, the out of balance signal then becomes:

∆V =
Vs

CT

∆Cs (2.5)

This allows us to directly convert out of balance voltage readings into changes in the

sample capacitance.

This also illustrates a very important consideration for the capacitance bridge

technique: as can be seen in the above expression, the out of balance signal of the

capacitance bridge is inversely proportional to the total capacitance at the center of

the bridge. In order to maximize the sensitivity of the bridge, the stray capacitance

to ground Cg should be minimized. Since the cables running to the top of the cryostat

have a shunt capacitance of at least 200 pF, using a room temperature amplifier to

measure the voltage when working with a 40 fF sample capacitance would result in

significant signal loss. For this reason, we have designed a cryogenic amplifier that is

mounted ≈ 1 mm from the tip, which allows us to reduce the total bridge capacitance

CT to a value of around 800 fF. A picture of the tip mount with the cryogenic amplifier

is shown in figure 2-4.

The cryogenic amplifier is based on a commercial low input capacitance High Elec-

tron Mobility Transistor (HEMT). The transistors we use are Fujitsu model FHX35X,

chosen for their low input capacitance, high transconductance, and their availability

in an unpackaged format. The schematic of the amplifier is shown in figure 2-5. The

design incorporates two FHX35X transistors. The measurement transistor is in a

common-source configuration, and is used to amplify the signal at the center point

of the bridge. The second transistor, labeled the “bias” transistor, is used in a very

unconventional way: by pinching off the channel, we use it as both a high impedance

(> 100 MΩ) resistor to provide the DC bias voltage to the gate of the measurement

transistor, and also as a reference capacitor for our AC capacitance bridge.

The use of the bias transistor offers several advantages. In order to work cold,
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Figure 2-4: Pictures showing the layout of the SCA charge sensor. In this sensor, the
measurement transistor has been cleaved. The tip is attached to the GaAs carrier
using non-conductive Stycast 1266 epoxy, and has been cut as short as possible to
minimize the shunt capacitance. In order to keep the wire bond from the tip to the
gate of the measurement transistor as short as possible, the transistors are lined up
as shown and the bond wire is glued directly to the tip. The extra wire bonds shown
in (a) connecting all of the bond pads are to protect the gates of the transistors from
static charge. They are removed once the wires are soldered to coaxial cables on the
microscope.
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Figure 2-5: (a) Schematic of the cryogenic amplifier. The measurement transistor acts
as a common-source amplifier. (b) Effective circuit during operation. Once pinched
off, the bias transistor acts as both a reference capacitor for the bridge and a high
impedance resistor for DC biasing the gate of the measurement transistor. A DC bias
applied to the sample allows us to adjust the DC voltage between the sample and the
tip.
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conventional resistors must be of the metal film variety, as “thick chip” ceramic and

carbon composition resistors have exponential temperature dependence in the cryo-

genic range. In order to produce a metal film resistor with a sufficiently high resistance

(> 10 MΩ), a long meander line pattern must be used as the sheet resistance of the

metal film is relatively small. These long meander line resistors result in an increased

shunt capacitance to ground, which would reduce our sensitivity. (Measurements

showed an increase of about 700 fF for a 10 MΩ commercial meander line resistor

from Mini-Systems Inc. as compared to an uncleaved FHX35X bias transistor.) A

second advantage of the bias transistor is that by opening up the channel, we can

obtain a direct measure of the gain of the measurement transistors. Knowledge of the

gain allows us to directly measure our shunt capacitance and the input noise of our

cryogenic amplifier (see appendix A). Quantitative measurements of both of these is

required to properly optimize the sensor design.

In addition to the gain stage at 300 mK, a second common-source amplifier stage

is used at the 1K Pot of the cryostat. The purpose of this second stage is to increase

the bandwidth of the cryogenic amplifier. In a common-source configuration with

a fixed drain resistor and a voltage readout, the bandwidth of the amplifier will be

limited by the RC charging time formed from the differential resistance of the HEMT

with the capacitance of the cable leading to the next voltage amplification stage.

This second stage is biased to give some amplification, but more importantly to give

smaller source-drain resistance than the first stage so that it can drive the capacitive

load of the cables to the top of the cryostat. With a typical setup, this gives an

overall corner frequency of about 300 kHz. At 1 MHz, the gain drops to about 2,

and the input noise of the room temperature amplifiers begins to become important.

The bandwidth can be increased by using a custom designed current amplifier to

read out the signal from the second stage (see section B.3). This increased the corner

frequency to about 1.5 MHz, which was likely limited by the differential resistance

of the first stage transistor charging the length of cable to the 1K pot. In the end,

however, the experiment suffered from significant electrical interference noise at these

high frequencies, possibly due to radio station signals. The signal to noise ratio was
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Figure 2-6: (a) The frequency spectrum of the broadband signal at the input of
the lock-in amplifier, recorded using the Tektronix TDS744 digital oscilloscope in
FFT mode. The noise consists of two components: a 1/f noise power spectrum
inherent to the transistors and interference noise that couples in as narrow band
spikes. The charging signal can be seen in the frequency spectrum as a peak at 212
khz. As long as the density of noise spikes is relatively sparse, interference noise can
be avoided by selecting a measurement frequency inside a 1 kHz range where there
are no spikes. The SR560 preamplifier was configured to give a 2-pole high-pass filter
at 10 kHz for this measurement. The inset shows the same signal spectrum recorded
to 1.25 Mhz, showing the significant increase in interference noise at high frequencies.
(b),(c) Forward and reverse scans showing an example of the influence of narrow-band
interference noise on the images. The noise produces a slow oscillation of the lock-in
output leading to opposing diagonal lines in the forward and reverse scans. (d),(e)
The same scan taken with the frequency shifted by 3kHz so that the interference noise
is now outside of the output filter bandwidth.

still poor at MHz frequencies despite the increased cryogenic amplifier bandwidth.

Noise in the experiment comes mostly from two sources: the interference noise

mentioned above, and the intrinsic noise of the HEMT transistors. Both of these

contributions can be seen clearly in the frequency spectrum shown in figure 2-6. The

units of the noise measurement using the FFT mode of the scope are in units of

the amplitude of the output voltage, but can be calibrated by measuring the noise

using the lock-in amplifier noise mode at a given frequency (see appendix A for a

detailed discussion). Interference noise is electrical noise that consists of sharp spikes

in the frequency spectrum where an external sinusoidal signal is coupling into the

experiment and is being amplified. The most common way this type of noise can
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couple in is through ground loops or unshielded cables. It can often be eliminated

by improving grounding, shielding, or both (see section X in [72] for an excellent

discussion of sources of interference noise and how to eliminate them). When looking

at the output of the lock-in amplifier, this interference noise will only appear if there

is a noise spike separated from the measurement frequency by an amount smaller than

the bandwidth of the output filter time constant (typically ∼40 Hz). The noise spikes

can easily be seen by looking at the frequency spectrum of the broadband signal after

amplification (see appendix A). If the density of spikes is not too high, they can be

eliminated by shifting the frequency by a small amount (∼100 Hz) to pick part of the

noise spectrum that is free of spikes.

The HEMT transistors also have an intrinsic noise spectrum that has a 1/f charac-

ter, and that is characterized as fluctuations in the channel conductance[73]. Because

the noise diverges at low frequencies, there is a significant advantage to working at

high frequencies. The noise becomes qualitatively “very bad” below about 10 kHz,

and makes it impractical to measure below this frequency. At 200 kHz, with a well

optimized setup, we have achieved input noises as small as 5 nV/
√

Hz. As a technical

detail, although the large low frequency noise will not couple in directly to the output

of the lock-in as it is well outside of the output filter bandwidth, it can limit the gain

that can be used on the room temperature amplifiers. For this reason, a Stanford

Research SR560 preamplifier is used with a 2 pole High pass input filter at 10 kHz at

after the second stage of the cryogenic amplifiers. This allows the gain of the room-

temperature amplifiers to be set quite high giving better overall noise performance.

(Typically, we were able to use 40 dB on the SR560 and 34 dB on the 7280 input

amplifier.)

Ultimately, the most important noise figure for the measurement setup is the

equivalent input charge noise. The capacitance signal can always be made larger by

increasing the magnitude of the AC excitation applied to the 2D electron system.

However, due to the small energy scales in the experiment, it is important to use a

small excitation voltage. Thus it is the charge sensitivity that will ultimately limit

our ability to reduce the amplitude of the AC excitation. Given an input voltage
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noise for the cryogenic amplifier, the charge noise can be calculated by multiplying

the voltage noise by the total center point capacitance:

e∗ = CT v∗ ≈ 5 nV/
√

Hz× 800 fF ≈ 0.04 e/
√

Hz (2.6)

One can see that reducing the shunt capacitance will lead to a lower charge noise

for the same input voltage noise. Since the averaging time needed to remove noise

goes as the square of the signal to noise ratio, every possible care should be taken to

minimize the shunt capacitance: a factor of two increase in the signal to noise ratio

results in a factor of four reduction of the averaging time.

As a final note, one has to be careful about how the center point capacitance is

minimized. In particular, an analysis of gain of the HEMT amplifier (see appendix

B) shows that reducing the shunt capacitance by cleaving the measurement transistor

will not necessarily increase the charge sensitivity, and in fact will likely only decrease

it. The reason is quite simple: the transconductance of the measurement transistor

is proportional to its width, and thus cleaving the transistor in half will cut the gain

in half. The input capacitance of the measurement transistor is about 300 fF, which

means that by cleaving the transistor we have reduced the total capacitance from ∼
800 fF to ∼ 650 fF. This 20% reduction of the shunt capacitance does not make up for

the 50% decrease in the transistor gain, and thus our overall sensitivity is reduced by

30%. This would suggest the optimal sensitivity would be achieved when the input

capacitance of the measurement transistor dominates over the unavoidable shunt

capacitance, although the details will also depend on how the input noise of the HEMT

varies with the channel width. (For more details, see the discussion in appendix B).

In practice, these considerations suggests that the measurement transistor should not

be cleaved, and that some benefit may be achieved by combining multiple FHX35Xs

in parallel.
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2.3 What does SCA measure?

Fundamentally, SCA directly measures the amplitude and phase of the AC charge

induced on the tip due to the AC excitation applied to the ohmic contacts at the

corners of the 2D electron system. To understand what this tells us about the physics

of the 2D electron system, consider the schematic model of the system as shown in

figure 2-7. The bulk 2D electron system can be thought of as a distributed RC network

formed from the sheet resistance of the 2D electron system and the self capacitance

of the 2D electron system to ground.

We will first consider the effect of varying the sample-tip capacitance. If the con-

ductivity of the 2DES is large then all of the resistors in this model will be irrelevantly

small and variations in the charging signal will tell you directly about the local capac-

itance between the sample and the tip. Variations of the sample-tip capacitance will

result in a change in the amount of charge induced on the tip for a given excitation

voltage. Variations of this nature can arise due to geometric changes in the sample-tip

capacitance, for example if the tip is moved closer or further from the surface of the

sample. They can also arise due to changes in the electrochemical (or “quantum”)

contributions to the capacitance. Such quantum contributions occur when one of the

plates of the capacitor is not a perfect metal, but instead a material with a finite

density of states dn/dE such as a semiconductor. In this case, the measured capac-

itance is reduced from the purely geometric capacitance [74, 75, 76]: for a parallel

plate geometry Cmeas is given by

1

Cmeas

=
1

Cgeom

+
1

e2A dn/dE
(2.7)

where e is the electron charge and A is the area of the capacitor. Physically, this

can be understood as due to a change in the work function of the semiconductor

due to a change in the Fermi energy. By applying an external voltage V to the

capacitor using a battery, we do not set the electrostatic potential difference between

the capacitor plates, but instead impose an electrochemical potential difference. If

the chemical potential of the semiconductor varies by an amount ∆µ due to a change
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Figure 2-7: Schematic showing a distributed RC model of charging in the 2D layer.

in its electron density, then the electrostatic potential difference between the plates

is ∆U = V − ∆µ. Measuring the charge on the plates, we would find a charge

Q = Cgeom(V − ∆µ), leading to a reduction of the measured capacitance. Through

this electrochemical contribution to the capacitance, SCA can in principle be used to

image local changes in the density of states of the 2D electron system.

Another way in which the charging signal can change is through variations of the

resistance of the path from the ohmic contact where the AC excitation is applied to the

position of the tip. If the resistance of the 2D electron system becomes large, then the

rate at which the network of resistors can charge and discharge the capacitors in figure

2-7 can become slower than the frequency of our AC excitation. As this happens,

the amplitude of the charging signal will also decrease. An important distinction,

however, is that this drop of signal will also be associated with a phase change: this

provides a clear signature that allows the differentiation between signal changes due

to capacitive effects and resistive effects.

The difference between the changes in the charging signal from these two effects

can be illustrated by considering the simple RC model shown in figure 2-8. Here,

the region under the tip is treated as having some self capacitance to ground given

by Cg. It is connected to the AC excitation by a resistor R. The sensor in our

circuit directly measures the in-phase and 90-degree lagging phase components of the

AC charge induced on Ctip. The resulting signal as a function of the measurement
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Figure 2-8: Simple RC charging model. (a) A model for the charging signal in the
experiment. A resistance R from the resistivity of the 2DES charges up local the
capacitances of the 2DES Ctip and Cground. The charge sensor directly measures the
charge induced on Ctip. (b) The in-phase and lagging-phase charging signals as a
function of frequency. As the frequency is increased, the capacitor does not have
time to charge and discharge during the cycle of the excitation. As we pass through
ω = 1/RC, the in-phase signal rolls off while the lagging-phase signal goes through
a peak. (c) A change in the sample capacitance Ctip results to first order in only a
vertical scaling of the whole curve, since more charge is being distributed on Ctip. (b)
Changes in the resistance R shifts the curve to lower frequencies but does not change
the height.
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frequency ω and the RC charging time τ is shown in figure 2-8. A change of the sample

to tip capacitance will result to first order in a constant scaling of the curve. Changes

of the resistance R, however, will cause the entire curve to shift laterally. As it does

so, we will see a roll off in the in-phase charging signal and a peak in the lagging-

phase signal. It is also interesting to note that for small resistances (ωRC << 1), the

in-phase signal will begin to change as:

X ∝ 1− (ωτ)2 (2.8)

while the lagging phase signal will be linear in ωτ :

Y ∝ ωτ (2.9)

Thus, small changes in the sheet resistance will show up stronger in the lagging phase

signal than in the in-phase signal. This effect is seen clearly in magnetocapacitance

curves at low magnetic fields, where Shubnikov-de-Haas oscillations appear first in

the lagging-phase data (see, for example, figure 2-18).

2.4 Understanding the influence of the measure-

ment on the 2D electron system

Charge accumulation imaging has a significant advantage over many other techniques

because the DC electric fields between the sample and the tip from the work function

difference can be completely nulled if desired. This is in stark contrast to STM: in

STM, there are large electric fields between the sample and the tip even when no

current is flowing. They cannot be eliminated because applying a bias voltage results

in current flow. These large electric fields will lead to a significant change in the local

electron density and Fermi energy under the tip. Another common technique that is

often used to study the 2D electron system is electrostatic force microscopy (EFM)

(or similar variants with different names that are based on measuring an electrostatic
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force, such as “scanning potential microscopy” [77, 78] or “Kelvin-probe” force mi-

croscopy). EFM is also capacitively coupled, but in EFM, the force is proportional to

the square of the image charge on the tip. This allows the sensitivity to be enhanced

by applying a DC voltage between the tip and the sample [77]. Using such a tech-

nique, EFM has the capability to achieve single-electron sensitivity [79, 80]. However,

the sensitivity is significantly degraded if the DC electric fields are nulled (see figure

2 in [80]). Because the SCA sensor is capacitively coupled and the sensitivity does

not depend on the DC fields between the tip and the sample, we can eliminate the

DC electric fields by applying a DC voltage to null them, and hence image features

of the unperturbed electron density.

While we can eliminate the DC perturbation of the 2D electron system, we will still

have a small AC perturbation due to the AC excitation we are using. An important

question then becomes: how small should the AC excitation be to avoid perturbing

the 2D electron system?

The effect of the AC excitation is relatively easy to analyze if the conductivity

of the 2D electron system is large. In this case, there are no lateral voltages in the

sample and the sample charges and discharges due to its capacitance to ground and

to the tip. This is shown schematically in figure 2-9. In the absence of the tip, the

AC excitation would induce a small, uniform modulation of the bulk density due to

the 2D layer capacitance to ground. In our case, the nearest ground plane is a metal

backgate evaporated on the back of the sample, a distance of ∼ 500 µm away. For a

10 mV excitation, this would give a bulk density modulation of:

∆nbulk =
εV

d
∼ 106e/cm2 ∼ ntypical

100 000
(2.10)

For typical electron densities of 1.5×1011 e/cm2, this corresponds to a density change

of 1 part in 105, and is completely negligible. The tip has a more significant effect. In

our experiments, we use tips with a large radius of curvature (∼ 2 µm). For a typical

distance of 50 nm above the surface, we can confidently use a parallel plate capacitor

model for the electric fields from the tip. The 2D electron system is 100 nm below
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Figure 2-9: Effect of the AC excitation on the fully charging 2D electron system. The
AC excitation induces a periodic modulation of the bulk density by an amount ∆nbulk

due to the self capacitance of the layer. There is an additional AC modulation under
the tip due to its local capacitive coupling. Typical numbers for these perturbations
are ∆nbulk ∼ 106 e/cm2 and ∆ntip ∼ 109 e/cm2, while n2D ∼ 1.5× 1011 e/cm2. Note
that the charge induced on the tip (ie. our signal) is equal to the total integrated
charge in the area above the dashed line in the figure.

the surface of the GaAs semiconductor, giving:

∆ntip =
V

100 nm
εGaAs

+ 50 nm
ε0

=
ε0V

60 nm
∼ 109 e/cm2 ∼ 1% (2.11)

For a sample density of 1.5×1011, the Fermi energy is about 54K, thus a 10 mV

excitation in this case produces variations of the local Fermi energy comparable to

our temperature of 300 mK, and can be considered a small perturbation. Note also

that, as shown in figure 2-9, the amount of AC charge induced on the tip is exactly

equal and opposite to the extra AC charge induced in the 2DES due to the presence

of the tip. Thus, in some sense, our signal is always proportional to the magnitude

of the tip’s AC perturbation of the 2D electron system.

Things become considerably more complicated if the 2D electron system, or por-

tions of it, become highly resistive. In particular, we will consider the case of an

isolated metallic region that is positioned under the tip. This island will be separated

from the metallic bulk by a highly resistive ring, as illustrated in figure 2-10. This

model has particular relevance for our experiment, where the inner disc represents a
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Figure 2-10: Model of an island in the 2D electron system that is isolated from the
bulk by a resistive ring. In the high resistance limit R >> 1/ωC, there will be a
voltage drop ∆V across the ring given by Vac divided by a capacitive “lever arm”.
This lever arm factor is given by the ratio of the island’s capacitance to ground and
the tip to its self capacitance.

region of ν > 1 induced by a DC tip bias, the resistive ring represents the incom-

pressible strip formed at ν = 1, and the magnetic field is chosen such that the bulk

is in the ν < 1 compressible state. If the resistance is large enough that the RC

charging time of the island is much longer than the period of the AC excitation, then

the island will not charge and there will be a voltage drop across the resistive region.

For a completely non-charging island, the voltage on the island will be determined

by a capacitive divider:

Visland =
Cbulk

Ctip + Cgnd + Cbulk

Vac (2.12)

and the voltage drop ∆V across the resistive region will be:

∆V =
Ctip + Cgnd

Ctip + Cgnd + Cbulk

Vac (2.13)

As long as the island’s capacitance to the bulk dominates its capacitance to ground

and the tip (Cbulk >> Ctip + Cgnd), the voltage on the island will float up and

down with the AC excitation, and the voltage drop will be small. If the island’s
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capacitance to ground and to the tip become significant, the voltage dropped across

the strip will increase. Estimates of this “lever arm” reduction depend sensitively

on the size and shape of the tip, the width of the strip, and the distance from the

tip to the surface. To obtain good estimates, we have calculated the lever arm using

a numerical electrostatic model (see chapter 5). From the simulations, we obtain

numbers on the order of ∼800 aF for Cbulk and ∼50 aF for Ctip and Cgnd. The

calculated lever arms vary from about 5 to 10, depending on the size of the tip its

height above the surface, the size of island, and the width of the resistive strip. Note

also that equation 2.13 gives only the maximum voltage drop possible: when the

resistive ring becomes leaky, the bubble can begin to charge again, and the voltage

drop across it decreases. When the resistance is low enough that the bubble fully

charges, the voltage drop goes to zero.

Ideally, the excitation should be chosen such that the maximum voltage drop

across the strip is small compared to other relevant energy scales in the experiment,

such as the Landau level energy gaps or the temperature. What are the magnitudes

of these energy gaps? The orbital energy gap for the GaAs 2D electron system is

h̄ωc = h̄eB/m = 1.7 meV/T, giving a gap energy of 10.2 mV at 6T for even integer

filling factors. At odd integer filling factors, the energy gap is not given by the

cyclotron energy, but instead by a spin subband splitting. In 2D systems at large

magnetic fields, this spin splitting is much larger that the bare Zeeman splitting that

is expected. The enhancement of the spin splitting is due to the exchange interaction,

which energetically favors electrons with parallel spin. This exchange enhancement

was first considered by Janak in 1969 [81] in non-quantizing magnetic fields . Ando

and Uemura [82] extended these ideas to the quantum limit at very large magnetic

fields, where only a small number of Landau levels are occupied. In their model, the

exchange energy is given by:

Eex = E0
ex(n↑ − n↓) (2.14)

where n↑ and n↓ are the relative populations of the two spin states of a given Landau
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level. At magnetic fields where an orbital Landau level is half filled, the exchange

interaction creates a large energy gap given by E0
ex and the system is spin polarized.

As we begin to fill the second spin sub-band, the magnetization is decreased, and the

exchange enhancement goes to zero as when the net spin polarization vanishes. In

this model, the relevant energy scale for us is E0
ex, as our tunnel barrier is formed by

the energy gap in the incompressible strip region, which is fully spin polarized.

In recent years, much more sophisticated models of the exchange interaction have

been introduced [83, 84, 85, 86, 87]. In particular, the possibility that the electron

spin does not have to lie along the magnetic field direction [85, 86] led to a remarkable

prediction that quasiparticles around odd integer filling factors are not simply single

spin up electrons, but instead consist of a charged, localized spin wave with a curl-

ing topological ordering of the spin orientation. These quasiparticles were described

as “skyrmions” [85]. Nonetheless, from our point of view, the exact nature of the

quasiparticles is not so important: whatever they are, there is still an energy gap for

creating them. These gaps can be calculated theoretically [85], and it is this energy

gap that will form the tunnel barrier in our incompressible strip.

From an experimental standpoint, a measure of the exchange-enhanced spin gap

can obtained from thermally activated transport measurements [24, 88, 25, 27, 30].

At quantum Hall plateaus, the conductivity σxx shows an activated behavior as a

function of temperature:

σxx = σ0
xx exp

[
− ∆E

2kBT

]
(2.15)

over as much as two decades in conductivity. Measuring the temperature depen-

dent activated conductivity yields an energy scale energy ∆E for the energy gap1.

From thermally activated transport measurements of σxx in odd integer quantum Hall

plateaus, Nicholas et al. [24] measured an activation energy gap at odd filling factors

of:

E0
ex = 1.73 meV/

√
T (2.16)

At 6T, this would give an exchange enhanced gap of 4.2 mV for integer filling. In

1See section 1.2 for a discussion of the factor of two.
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subsequent works, measurements at lower fields showed that the activation energy at

low fields fit better to a linear function of B [25, 89, 30], and was attributed to the

effects of disorder. One has to be careful, however, in interpreting these numbers.

The connection between the activation energy obtained from transport through the

bulk sample and a microscopic energy gap must be made through a model of the

localization in the quantum Hall effect, and a model of exactly how this localization

affects the diagonal conductivity. Since localization and transport mechanisms in

the 2D electron system at quantum Hall plateaus are still not well understood, the

exact connection between the bulk measurements and microscopic energy scales is not

clear. These numbers should only considered as a guideline as to what the microscopic

energy gap could be at high fields.

It would be nice to use an AC excitation small enough that any voltage drops in the

sample is smaller than all of these energies. In practice, however, the AC excitation

cannot be made arbitrarily small. Furthermore, without a detailed model of the

capacitive lever arm, it is even difficult to say a priori how to relate the magnitude

of the excitation to voltage drops in the sample. The practical limitation is that

reducing the excitation amplitude has a quadratic effect on the required averaging

time: reducing it by a factor of two requires four times as much signal averaging. At

some point, instability in the tip position and other factors make it impractical to

spend more time averaging. It is mostly this signal-to-noise limitation that influenced

the choice of the amplitude of the AC excitation we have used in our measurements.

It is important, however, to keep in mind the ways in which the amplitude of the

excitation can influence the experiment, and to carefully study the effect that changing

the excitation has on the results.

2.5 Sample Design

In our experiments, we study high mobility 2D electron and hole systems produced in

AlGaAs/GaAs heterostructures. These are grown by molecular beam epitaxy by our

collaborators. In order to perform SCA microscopy on these samples, as a minimum
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Figure 2-11: Optical images of the sample after processing. Four ohmic contacts are
patterned in the corners using photoresist drawn with a toothpick. The metal topgate
is patterned with optical lithography and is made from a 10 nm thick chromium layer.
The gate bars are 10 µm wide and have alternating 10 and 20 µm gaps. The back
of the sample is polished on a wafer polishing machine and a 200 nm Ti/Au layer is
deposited to act as a backgate. In (c), the small black box indicates the maximum
size of the scan window of the SCA microscope.

we need to make ohmic contacts to the 2D electron layer. This is achieved using

standard annealed NiAuGe contacts for electron systems. The sample processing

techniques we have used are the same as outlined in [11].

While ohmic contacts are the only necessary sample processing for SCA studies,

the majority of our samples also include a metal topgate patterned on the sample

surface. This topgate is defined using optical lithography after making the ohmic

contacts. The pattern consists of a repeating set of “combs” that are 10 µm wide and

have alternating 10 and 20 µm gaps. Optical pictures of a sample with a topgate are

shown in figure 2-11. The metalization is made from a 10 nm thick later of Cr, made as

thin as possible while maintaining a conducting continuous metal film. AFM images

of the gate are shown in figure 2-12, and show a height of 10 nm. The gaps in the

comb fingers are chosen to match the maximum scan range of our microscope. This,

combined with the repeating pattern, means that we do not have to walk laterally

after the initial coarse approach, as all points on the 5 mm area are equivalent. The

gates also prevent the diffusion of surface charge between adjacent gaps, allowing us

to always be near a fresh unperturbed region of 2D electron system should the tip

touch the surface.
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Figure 2-12: (a) A 40x40 µm AFM image of the sample after processing, taken
with the Digital Instruments AFM in the CMSE shared facility. The surface of the
sample shows islands approximately 1 nm tall and 1 µm in size. These islands are
formed naturally as part of the epitaxial growth. Also shown in the bottom left is
an example of an oval growth defect: it is about 5 µm in diameter and is 20 nm tall.
(b) A horizontal line cut of the AFM image, taken at the position indicated by the
arrow in (a). The gate is relatively flat, and shows a measured thickness of 10 nm.

The original idea behind the topgate was to allow us to locally deplete the electron

layer and image the spatial structure at the edge of the 2D electron system. However,

in every sample we have tested, applying a topgate voltage has led to instability

and spreading of charge into either the surface states or the donor layer. (This was

also observed in scanning probe measurements by other groups [90]). In all of our

results, we have been careful never to apply a DC voltage to the topgate. While it

does not serve its original intended purpose, the topgate has proven to have many

useful properties: it aids charging of the bulk of the sample at high magnetic fields,

it greatly simplifies finding the surface without damaging the tip, and it provides a

method of measuring the size of the tip in-situ. For these reasons, we have continued

to use samples with a patterned topgate.
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Figure 2-13: A magnetocapacitance trace taken with sample from wafer M226 with
no gate. The solid and dashed lines show the in-phase and lagging-phase charging
signal respectively. With a filled Landau level in the bulk, the in-phase charging signal
shows a deep minimum. Note also that the lagging-phase charging signal has gone
entirely through the dissipation peak. Although a bridge calibration was not recorded,
the signal level at the minima correspond to a capacitance change comparable to the
full out-of-balance signal (about 30 fF).

2.6 Characterizing the sample using Magnetoca-

pacitance

An important measurement we can perform using the SCA microscope is of the charg-

ing signal as a function of the magnetic field. We will refer to such a measurement

as a “magnetocapacitance” trace. Such a measurement allows us to quantitatively

measure the sample density as well as qualitatively assess the mobility of the sample.

It has also proven useful at times for identifying sample instability due to effects such

as parallel conduction in the donor layer or in the surface states.

An example of the results of such a measurement is shown in figure 2-13. The

data was taken using a sample from wafer M226, which had a mobility of ∼ 1× 106

cm2/Vs and a density of 1.5 × 1011 cm−2. The sample was fabricated without a

topgate. The charging signal shows strong dips at positions of integer filling factor.
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Figure 2-14: Contributions from the sample-tip capacitance include contributions
from the local region of the 2D layer under the tip as well global contributions from
the entire sample to the full length of the tip. Out of the total sample-tip capacitance
of ∼40 fF, the local contribution from the last micron length of the tip is typically ∼1
fF for blunt tips, and local contributions from its very end are comparable to ∼100
aF.

Note, however, that these dips in the in-phase charging signal are also associated with

peaks in the lagging phase signal. As discussed in section 2.3, this is an indication

that the signal change is not due to a change in the sample capacitance, as would

be the case for a quantum density of states contribution, but instead associated with

a drop in the longitudinal conductivity σxx of the 2D electron system. In order

to charge and discharge the self capacitance of the 2D electron layer, charge must

move in and out laterally from the ohmic contacts. Lateral movements of charge are

controlled by the diagonal conductivity σxx, and thus measuring the charging signal

is the same as measuring the diagonal conductivity in a transport experiment in the

Corbino geometry (see reference [91], where a model is described for quantitatively

extracting the conductivity from the charging signal for a simple topgate geometry.

This technique was also used in a recent paper [92] for measuring conductivities at

low carrier density.)

Measurements such as those shown in figure 2-13 represent changes in the tip to

sample capacitance due to an elimination of charging of the entire bulk of the sample:

the signal drop is not associated with a local change in the 2D electron system. Since
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the tip is very long, the total capacitance from the tip to the sample is very large (∼ 10

fF) compared to the local contribution from the very end of the tip (∼ 100 aF). This

is illustrated in figure 2-14. Thus, measuring the charging signal while sweeping the

magnetic fields results in large background changes that are not associated with the

local properties of the 2D electron system. A significant advantage of this, however,

is that these magnetocapacitance traces can be taken with the tip very far away, even

with the tip millimeters from the sample. This is very convenient, as it allows us to

characterize the sample before beginning the coarse approach.

As described in section 2.5, most of the samples we have used include a metal

“finger” gate patterned on the surface, to which we apply no DC voltages, but to

which we do apply the same AC voltage as to the ohmic contacts. The presence of this

topgate significantly changes the charging of the sample. Magnetocapacitance traces

from two samples with topgates are shown in figure 2-15. In figure 2-15, the dips in

the charging signal are much narrower, meaning the bulk of the sample is continuing

to charge even though the 2D electron system is entering a Hall plateau. Also, for

the trace shown in figure2-15(b), the lagging phase signal does not go completely to

zero, indicating that much of the sample may still be partially charging.

The presence of the topgate has two important effects. Due to the work function

difference between the Cr metal and the 2D electron system, the density under the

gate is different from that of the bulk. Previous work estimated a density depletion

of about 20%. The magnitude and even the sign of this density change depends on

the specific heterostructure: while depletion has typically been observed, one wafer

(12-16-03.2) showed a density enhancement under the gate. Either way, having a

different density under the gate means that at magnetic fields where the bulk 2D

electron system is at filling factor ν = 1 and is highly resistive, the 2D electron

system under the gate will not be at ν = 1 and could still be compressible. This

compressible region under the gate would provide an alternate low resistance path for

moving charge into the middle of the sample from the edge, resulting in an increase

in the bulk charging.

Another way that the topgate can increase the bulk charging is through its ca-
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Figure 2-15: Magnetocapacitance traces taken on sample with a topgate. (a) A
magnetocapacitance trace taken on sample 12-1-03.2, which was patterned with a
topgate. In the sample, the density under the gate was slightly depleted. The solid
and dashed lines show the in-phase and lagging-phase charging signal respectively.
The total drop in the charging signal is much smaller that in samples without a
topgate: this trace shows a capacitance change of about 100 aF, compared to 30 fF
for the sample without a topgate. The dips at quantum Hall plateaus are also much
narrower, and the lagging-phase signal does not go entirely through the dissipation
peak. This trace was taken at 212 kHz. (b) A magnetocapacitance trace on sample
12-16-03.2. This sample differed from all other samples with topgates in that the
density under the gate was enhanced. This significantly changed the bulk charging:
the in-phase signal shows a larger dip, and the lagging phase signal goes through the
dissipation peak.
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Figure 2-16: Schematic illustration of charging of the 2D layer in a sample with a
topgate. At Hall plateaus, the resistance to the ohmic contact ROC diverges. The
presence of the gate allows us to still drive AC charge onto the tip capacitor through
the capacitive coupling of the gate to the 2D layer.

pacitive coupling to the 2D layer. As the topgate has a large capacitance to the 2D

layer (∼ nF), applying an AC excitation to it can also drive charge in and out of the

2D electron system purely capacitively. This is shown schematically in figure 2-16.

Essentially, if Roc diverges, the capacitance Ctip can still charge, but now through a

current path provided by Cgate.

In the end, the experiments we will describe will mostly be performed at magnetic

fields where the bulk 2D electron system is highly conductive, and thus these bulk

charging issues are not so important. Nonetheless, the gate plays a crucial practical

role in the experiment, allowing us to reliably find the surface and calibrate the size

of the tip. These procedures will be described in detail in later sections.

We have also observed effects on the magnetocapacitance traces that are not well

understood. In particular, magnetocapacitance traces on samples with topgates show

a smooth “shoulder”. In some samples, this smooth should shows a very reproducible

hysteresis on a forward and reverse magnetic field sweep, shown in figure 2-17(a).

On an up sweep, the in-phase charging signal has as deep minimum with a low field

shoulder, while on the down sweep it shows two peaks. Figure 2-17(b) shows the sig-

nal as a function of time after the magnetic field was swept up to 6.25 T and stopped

abruptly. The signal shows a slow relaxation from the lower curve in 2-17(a) to the

upper curve with a time scale of ∼ 100s. While the exact origin of this behavior

is not understood, it may be related to effects from quantum Hall persistent eddy
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Figure 2-17: (a) The in phase charging signal for a forward and reverse sweep through
ν = 1. On the up sweep, the signal shows one deep minimum, while on the down
sweep, it shows two shallower dips. (b) Charging signal versus time after the magnetic
field was swept up to 6.25T, shown by the blue arrow in (a). The signal shows a slow
relaxation from the signal level in the lower curve to that in the upper curve in (a).
The origin of this relaxation is not understood, but may be related to slow movement
of incompressible strips, and may have relevance to persistent quantum Hall currents.

currents [93, 94, 95, 96, 97]. When sweeping the magnetic field, an EMF is induced

that creates eddy currents in the sample. In the quantum Hall regime, these cur-

rents can be carried as dissipationless currents in incompressible regions, which take

a very long time to decay. The origin of these eddy currents can also be thought of

in another way: sweeping the magnetic field at integer filling factor causes the outer

edge of the incompressible region to move towards or away from the center of the

sample. Since incompressible regions are associated with charge re-distributions, this

must also be accompanied with the lateral motion of charge across an incompressible

strip. If this charge transfer is slow, then before the charge relaxes, an excess voltage

will be present across the strip. Currents in the incompressible regions are driven

only by transverse voltages, and so this transverse voltage will result in a excess cur-

rent2. This also leads to a very simple understanding of the dissipative processes that

cause quantum Hall eddy currents to decay: these are processes that transfer charge

across the incompressible regions, relaxing the excess transverse voltage, allowing the

2This relationship between the positions of the edges of incompressible regions and non-
equilibrium quantum Hall eddy currents has recently been confirmed in an experiment where eddy
currents were induced in a sample in a fixed magnetic field by sweeping the carrier density using a
backgate [98].
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incompressible edge to relax to its equilibrium position. The data in figure 2-17 could

also have a similar explanation: such a slow moving incompressible edge could result

in a capacitance change as it moves from under the gate to the region of ungated 2D

electron system, and could be responsible for the observed hysteresis.

As mentioned above, a magnetocapacitance trace can be used to qualitatively asses

sample mobility. In high quality samples, σxx becomes very small at the Hall plateaus

even at high LL index. In transport this leads to good Hall voltage quantization down

to very low fields, and is an indication of the high mobility of the sample. In a similar

way, the depth of the capacitance dips at low fields can also be used to qualitatively

asses sample mobility. Figure 2-18 shows a magnetocapacitance trace from a sample

from wafer 12-16-03.2, whcih had a mobility of 7.0 ×106 cm2/Vs. Dips in the charging

signal are seen down to very low magnetic fields, with signatures in the lagging phase

signal being visible up to a Landau level index of ∼40. The sample also shows a small

dip at ν = 2/3, indicating the presence of fractional quantum Hall states. Both of

these are experimental indications of the sample mobility.

Magnetocapacitance traces can also sometimes be used to asses the stability of

the donor and/or surface states in the sample. In many of our experiments, we will

be interested in gating the 2D electron system using DC electric fields from the tip. If

there is instability in the surface states or the donor layer of the sample, then charge

in the unstable layer can move around to screen the DC electric fields from the tip.

In one sample, we observed that the donor layer was marginally stable. If the sample

was cooled down too slowly, it would exhibit parallel conduction, and we would not

be able to gate it reliably. On these cooldowns, the magnetocapacitance traces also

showed a broad, unstable shoulder on the low-field side of the capacitance dips, as

shown in figure 2-19. On subsequent cooldowns at a faster cooling rate, this shoulder

was absent as shown in figure 2-15(a), and the sample was stable. Examining the

magnetocapacitance curve before we began the coarse approach saved considerable

time compared to walking in and then back out again.

An even more extreme example of parallel conduction was seen in the same sample

after cryogenic illumination with a red LED. Cryogenic illumination results in an effect
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Figure 2-18: A high mobility sample (wafer 12-16-03.2) showing charging signal oscil-
lations down to very low magnetic fields. Oscillations at even filling factors are seen
up to Landau level index >40 in the lagging phase.
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Figure 2-19: The broad low-field shoulder in this magnetocapacitance trace was an
indication of instability in the donor layer in this sample.
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Figure 2-20: Magnetocapacitance in a sample that showed bad parallel conduction
after illumination with a red LED. The dips at integer filling were “cut off” all at the
same depth once the 2D electron layer became more resistive than the donor layer.

called persistent photoconductivity [99, 100, 101], which is commonly used (see, for

example, ref [102]) to increase the 2D electron layer carrier density and the mobility.

In our experiment, after illumination of the marginally stable sample, the conductivity

in the donor layer became so high that it was also able to screen the AC electric fields

from the 2D layer to the tip. This manifested itself in the magnetocapacitance traces

as dips in the charging signal that were all “cut off” at the same signal level, as shown

in figure 2-20. Our interpretation is that outside of the charging dips, the 2D electron

system has a higher conductivity than the donor layer, and thus charge moves in

and out of the 2D electron system in response to the AC excitation. As we approach

integer filling, σ2D
xx drops, and the charging signal starts to drop. However, once σ2D

xx is

less than σdonorlayer
xx , AC charge then begins to move instead through the donor layer,

and the charging signal stops dropping. While the effect is not always as extreme

as this, in our experience LED illumination has lead to parallel conduction that is

strong enough to prevent at least DC gating in all of the samples we have tested.

63



2.7 The shape of the tip

As in any scanning probe experiment, the shape of the tip can dramatically influence

the measurement, and in particular, the interpretation of the data. Experiments such

as AFM and STM have an advantage in this respect in that the interaction between

the tip and the surface is very short range: in AFM, it is typically the van der Waals

potential with a 1/r6 term in the attractive regime and a strong repulsive term∼ 1/r12

in the repulsive regime. In STM, the signal is even more strongly distance dependant,

with the tunnel current falling off exponentially with distance. For our measurement,

the Coulomb interaction falls off only as 1/r, and thus we expect that we will be more

sensitive to the overall shape of the tip than STM or AFM measurements.

For charge accumulation measurements, it turns out that there is a significant

advantage to using a large tip. A tip with a blunt end has a much larger local

capacitance to the 2D electron system, and thus for the same AC excitation, a much

larger amount of charge is induced on the tip. This leads to a dramatic increase

of our signal. One of the difficulties of scanning probe microscopy is that it can be

very difficult to assess the shape of the tip in-situ. One of the most important things

I have achieved in my Ph. D. research is a method for systematically determining

the size of the tip from SCA measurements using a combination of a well calibrated

capacitance bridge, a careful inspection and analysis of the gate images, numerical

modelling, and systematic experimentation with tips of various sizes. This work has

allowed us to determine that in all previous SCA work [11], the tip had been blunted

by crashing into the sample surface. Estimates show that the tips used ranged in

size from ∼ 1 µm to ∼ 10 µm. The most useful data for the determination of the

tip size are the shape and amplitude of the capacitance change curve as a function

of the distance from the surface (which we will call the capactiance “tip approach”

curve), and the shape and the magnitude of the capacitance change between areas

covered with gate and ares with the exposed 2D electron system in images taken at

zero magnetic field. We will discuss each of these in the following sections.
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2.7.1 Analysis of the capacitance tip approach curve

A useful type of measurement involves measuring the charging signal as a function

of the distance between the sample and the tip. This is performed after the coarse

approach so that the sample is within the Z range of the scan tube (2.4 µm at 300

mK). A typical curve is shown in figure 2-21. In general, for distances far from the

surface, the curve is roughly linear, but as the tip gets closer to the surface, there is a

strong “upturn” in the capacitance. One remarkable feature of the curve is that it is

very difficult to fit with any reasonable function over the full 2 µm range. Attempts

to fit it to a parallel plate capacitor model even in only the “upturn” region are

unreliable, and more complicated models that attempt to fit the entire range, such

as a linear term plus a 1/d term introduce too many degrees of freedom to the fit.

This may not seem surprising since it seems unlikely that our tip would be mod-

elled well by a parallel plate capacitor. When the tip is far from the surface, it can

be thought of as a semi-infinite cone. Since the electric fields around the apex of

the cone drop off as a power law, the capacitance far away will vary more slowly

than a parallel plate model. As the tip gets closer and the radius of curvature of the

tip becomes comparable to the distance from the tip to the 2D electron system, the

electric fields no longer fall of as a power law, and we begin to approach the parallel

plate limit. Thus the distance scale of the strong “upturn” in the capacitance curve

will occur when the radius of curvature of the tip is comparable to its separation from

the surface.

More quantitative information can be obtained from the magnitude of the capac-

itance upturn ∆Cupturn. In order to perform accurate comparisons of tip approaches

with different tips, a carefully calibrated bridge is required in order to convert the

lock-in readings into absolute capacitances. This conversion factor will depend on the

shunt capacitance, the amplitude of the excitation, and the gain of the amplifiers:

∆Vlock−in =
∆Vcenter

G
=

Vs

GCtotal

∆C (2.17)

where G is the total gain of the amplifiers and Vs is the amplitude of the AC voltage

65



���

��

����

����

����

����

�����

�����

���� �� ���� ���� ���� ��� �����

#
H

A
RG

IN
G

�3
IG

N
A

L��
A

&
	

$ISTANCE��NM	

^�,INEAR

h5PTURNv

Figure 2-21: The in-phase (solid lines) and lagging-phase (dashed lines) charging
signal as a function of the z-position of the tip. The black curves are for a position
over the 2DES and the red curves are over a metal gate. The x axis shows the
vertical displacement of the scan tube from its equilibrium position. Curves have
been truncated at the position where the tip touched the surface. Since the lagging
phase signal is flat, the in-phase signal can be interpreted directly as a capacitance.
These curves were taken with a custom etched tip with a 3 µm radius of curvature
that had not been crashed. The curve can be qualitatively divided into a roughly
linear section with a strong “upturn” close to the surface.
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applied to the sample. Note that if the value of the reference capacitor is known,

it is not necessary to directly measure G and Ctotal in order to calibrate the bridge.

Instead, the product GCtotal can be measured by measuring the change in the output

signal is response to a change in the AC amplitude Vref applied to the reference

capacitor. In this case, we will have:

∆Vlock−in =
∆VrefCref

GCtotal

(2.18)

Thus if we know the value of the reference capacitor, performing this measurement

will allow us to calibrate our out of balance capacitance signal. In our experiment,

we use a pinched off FHX35X transistor as our reference capacitor. The source-

drain capacitance of and uncleaved FHX35X was measured against a fixed 500 fF

reference capacitor, which was independently calibrated using the General Radio

manual capacitance bridge. The results of these measurements showed that after

pinch off, the source-drain capacitance of an uncleaved FHX35X including the wire

bonds was 100 fF, and was independent of the gate voltage. By using a computer

controlled signal generator, we perform the above calibration measurement for the

sensor on our SCA microscope several times a day in order to keep a reliable record

of the conversion factor from lock-in units to absolute capacitance units. (For details,

see appendix A).

Figure 2-22 shows calibrated tip approaches for several different tips. Of particular

interest is a curve from a cool-down where I managed to come into range without

smashing the tip too badly. (This is quite difficult with a sharp tip: see section 2.8

for a discussion of the coarse approach procedure with the SCA microscope.) The

capacitance curve shows only a very small linear slope and exhibits no measurable

“upturn” even when the tip was moved close enough that it touched the surface of

a metal gate. The position of the surface in this case was easily determined because

once the tip touches the metal gate, the DC bias on the measurement transistor is

shorted out and the signal drops immediately to zero. The fact that the tip was sharp

was also confirmed by images of the gate (see next section). The other capacitance
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Figure 2-22: Capacitance vs. distance for tips of various sizes. (a) A PtIr tip smashed
in-situ. A later inspection under an optical microscope showed a flat end of about
3 µm. (b) Tip approach for a nominally sharp tip PtIr tip. It does not show any
measurable upturn. The tip shorted to the gate at the closest position, demonstrating
that we had reached the surface. (c) The same tip 1 day later after it had been
smashed in-situ when the cryostat swung. (d) Tip approach for a moderately damaged
tungsten tip. The tip was initially sharp, but was likely damaged during coarse
approach. (e) The same tip after attempts to enlarge it by smashing the surface.
Further smashing did not enlarge the tip. SEM images showed it had buckled, but
would not smash as easily as the PtIr tips. (f) A capacitance approach curve for a
undamaged etched tip with a 3 µm radius.
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traces in figure 2-22 show upturns of difference magnitudes, ranging from no upturn

for the sharp tip to 2.5 fF for the bluntest. The magnitudes of these upturns are an

indication of the effective “area” presented by the end of the tip in the parallel plate

capacitor model.

If a tip can be retrieved from the experiment after a run without damage, then

the capacitance tip approach curves can be correlated with the tip size through an

examination of the tip in an optical or scanning electron microscope. Alternatively,

tip approach curves can be compared with the results from the numerical simulations

discussed in Chapter 5.

One of the difficulties in using tip approach curves to determine the tip size is that

it requires knowledge of the calibration of the bridge, which is not always available.

A more robust method of determining tip size involves an analysis of the SCA images

of the gates. From this measurement, discussed in the next section, a measure of the

size of the tip can be obtained that is independent of the bridge calibration.

2.7.2 Analysis of the SCA gate images

In addition to increasing the charging rate to the bulk of the sample (see section 2.6),

the topgate on the sample has proved to be of indispensable use in calibrating the

shape of the tip, as well as in finding the surface of the sample (see section 2.8).

Images of the gate can be used to calibrate the tip size in two ways. First, the

magnitude of the capacitance change ∆C in the image as the tip is moved from over

the gate to over the 2D electron system will yield information about the size of the

tip. Similar to the tip approach curves, quantitative comparisons of different images

requires a calibrated bridge. Another way to gauge the size of the tip is from the

“smear” of the edge of the gate in the SCA images. Since this involves only a distance

scale, it can be used even when the bridge calibration is not known. For a simple tip

with a flat end, the edge of the gate in a line cut of the SCA image will be smeared

over a distance scale comparable to the diameter of the flat face of the tip. Although

there will also be contributions from portions of the tip that are further away, we will

see that these die off quite quickly. The exact shape of the line cut for arbitrary tip
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shapes can be obtained from numerical simulations (see chapter 5).

A complicating factor is that both the capacitance change and the smearing will

also depend on the z height of the tip above the sample surface. For quantitative

comparisons, images should be taken at the same sample-tip separations. In practice,

the separation is chosen to be as small as possible such that the tip does not short

to the gate metalization, either by touching or by tunnel current. This is part of a

standard procedure for selecting the scan height (see section 2.8). While this height

will strongly affect the magnitude of the capacitance change, it is not critical for

estimates of the tip size from the gate smear. The reason for this is that when the tip

is retracted to such a distance that it is no longer in a parallel plate capacitor limit,

then there is a significant loss in the signal to noise. On the other hand, if it is in the

parallel plate limit, the distance from the tip to the surface is small compared to the

radius of curvature of the tip, and thus the smear will be dominated by the tip radius

and not the tip height. Thus, as long as an image of the gate shows a good signal to

noise ratio, it can be used to obtain an estimate of the tip size from the gate smear.

This can be confirmed by comparing gate images for a known tip at different heights.

Figure 2-23 shows capacitance images of the gate taken with several different

tips. Also shown in the figure is the magnitude of the capacitance change ∆C, the

magnitude of the AC excitation, and the averaging time. The capacitance change

varies between 3 aF for the sharpest tip to 200 aF for the largest tips. The figure also

demonstrates the dramatic enhancement of the signal with a blunt tip: the image

taken with the sharp tip was averaged for more than 12 hours, while that with the

etched tip was averaged for 1 minute. Figure 2-24 shows line cuts from the scans

taken in a direction perpendicular to the gate. As can be seen in the line cuts,

larger tips result in an increased smearing of the capacitance step between the gate

and the 2D electron system. The length scale of this smearing is a direct measure

of the maximum capacitive (electrostatic) spatial resolution of the experiment. For

non-perturbative measurements, no feature should exist in the images that is sharper

than this smearing. As we shall see, for measurements where the interaction of the

tip with the 2D electron system is significant, much sharper features can be seen in
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Figure 2-23: 10x10 µm images of the edge of the gate taken with different tips.
(a) Image taken with the sharp tip. Note the very long averaging time required for
the image. The tip approach curve for this tip is shown in figure 2-22(b). (b) An
image taken with the same tip after it had been smashed into the surface, with the
approach curve shown in figure 2-22(c). (c) An image taken with the blunted tip
from the approach curve shown in figure 2-22(e). The black square over the electron
system near the top center is a region where the tip was intentionally crushed into
the surface during a small scan in an effort to blunt it. (d) An image taken with an
etched tip. Note the exceptional signal to noise ratio for such a small averaging time.
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Figure 2-24: Line cuts from the images of gate taken from the corresponding panels
in 2-23. The line cut direction was oriented perpendicular to the gate edge. Note
in panel (d) that although the tip is etched to give a 3 µm radius of curvature, the
electrostatic resolution is about 700 nm.
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the charging images. Finally, it is interesting to note that the line cut show in figure

2-24(d) was taken with an etched tip with a ∼ 3 µm radius of curvature, but shows

a gate smearing of ∼ 700 nm. Thus, even though the Coulomb interaction falls off

only as 1/r, the measurement is still mostly sensitive to the region at the very end of

the tip.

2.8 Finding the surface of the sample

During cool-down from room temperature, the sample is separated from the tip by∼ 1

mm. In order to be able to image, the surface of the sample must be moved to within

30 nm of the end tip. To do this, the coarse approach motor is used (see section 2.1).

In most scanning probe measurements, this is performed in an automated way by

the SPM controller electronics. The controller is designed to automatically take steps

using the coarse approach motor until a feedback signal from the surface, such as a

cantilever deflection in AFM or a tunnel current in STM, is detected. Unfortunately,

in charge accumulation imaging, there is no reliable feedback signal for detecting the

surface. Because the sample to tip capacitance is dominated by the stray capacitance

from the entire length of the tip to the sample, even the sample-tip capacitance value

cannot be used as a reliable indication of the sample-tip separation due to variations

in the length of the tip. (Typically, the total sample-tip capacitance when in range

has varied between 30 to 40 fF.) The only real indication of the surface that we have

is the “upturn” in the capacitance discussed in the previous section. Unfortunately,

this is too qualitatively defined to allow a computer-controlled approach.

The method we have adopted for finding the surface during coarse approach is a

non-automated procedure that involves looking for the onset of non-linearity in the

capacitance vs. distance curves while we walk in. This is described in figure 2-25.

When the tip is far away, performing a capacitance vs. distance trace by moving the

scan tube gives a linearly increasing capacitance, as shown in figure 2-25(a). During

the coarse approach, the capacitance vs. time is measured, as shown in figure 2-

25(b). The capacitance vs. time during operation of the motor generally shows a
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Figure 2-25: Coarse approach procedure. From far away, the capacitance vs. distance
measured by moving the scan tube is linear, as shown in (a). The curve is fitted with
a line and the slope is recorded. (b) The coarse approach motor is used to walk
the sample towards the tip, and the capacitance signal is monitored as a function
of time. At the beginning of the recording, the tip is moved in by 1.2 µm, allowing
the distance walked to be read off from the capacitance change. (c) As the sample
moves closer, the slope in the tip approach curves becomes steeper. (d) Once the
slope has increased by about a factor of 5, the tip approach curves start to show some
non-linearity. (e) At this point, the coarse approach motor is operated manually to
move the sample in exact increments of the Z scan range (2.4 µm) (f) Eventually, the
tip approach curve shows a “very steep” upturn. The software is stopped manually
so that the tip does not crash into the surface.
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linear slope if the coarse approach motor is working properly. As the sample gets

closer, the capacitance begins to rise faster as a function of distance. However, since

the pitch of the ramps is not constant as a function of rotation angle, we cannot

use the capacitance vs. time during walking as a gauge of this. Instead, we stop

walking every 500-1000 steps and perform a capacitance vs. distance measurement

using the scan tube to move the tip, and fit this to find a slope in aF/µm. These

slopes for a typical approach are plotted in figure 2-25(c) as a function of the total

number of walking windows taken. Once the slope has increased by a factor of ∼ 5,

the capacitance vs. distance curves begin to show a noticeable non-linearity. At this

point, the walking is performed manually in increments of the maximum scan tube

range of 2.4 µm, and capacitance vs. distance curves are remeasured. Eventually, the

capacitance vs. distance curve will show a sharp upturn, as shown in figure 2-25(f).

This sharp upturn is an indication that the tip is within about 100 nm of the surface.

The software should be stopped when this curve gets “really steep” to avoid crashing

the tip into the surface. At this point the sample is then moved such that the sharpest

portion of the upturn is at an absolute position of Z = -2000 Å.

The next step is to adjust the plane compensation. The RHK SPM controller has

two plane compensation settings that allow the tip to be scanned in a tilted plane to

compensate for any small tilt on the sample. This functionality is crucial for scanning

probe experiments such as ours where we operate without surface feedback. These

settings should be adjusted to level a 10x10 µm capacitance image taken initially with

the tip at Z = 3000 Å (5000 Å from the position of the sharpest part of the upturn).

The tip should then be moved towards the sample initially in 500 Å increments,

readjusting the plane compensation as necessary. As the tip is moved closer, a gate

should appear in the image. (If it does not, the scan range may be increased if

possible, or you may need to walk laterally.) Once the gate becomes clear in the

signal to noise of the image, the steps in Z should be decreased to 200 and then 100

Å. Eventually, the tip will short to a tall point in the area over the gate, unbiasing the

measurement transistor and leaving a clear signature in the image, as shown in figure

2-26(f). At this point, the tip should be retracted by 100 Å so that the tip no longer
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Figure 2-26: Once the approximate position of the surface is found from the tip
approach curve, the “closest” scanning distance is found by watching images of the
gate as the tip is moved closer. Panels (a)-(f) show 10x10 µm images as a function
of the Z position of the tip. As the signal to noise ratio improves, smaller steps are
taken. Eventually, tunnel current from the tip to the gate shorts out the measurement
transistor bias as the tip “brushes” tall spots over the gate, as shown in (f). At this
point, the tip is retracted 100 Å. The tip is now in scanning range.

shorts to the gate. The gate has a nominal thickness of 10 nm, but has high points

that are as tall as ∼20 nm. Thus, this distance should correspond to 30 nm from

the sample surface. In my experience, the sample-tip separation will drift up and

down by ∼10-20 nm during normal operation over the period of a couple of hours.

If scanning continuously, the absolute sample-tip capacitance should be monitored

by plotting image histograms, and the z height should be adjusted accordingly to

compensate for drift. Ultimately, this drift of unknown origin makes it impractical

to scan closer than 30 nm from the sample surface. After leaving the microscope

overnight or after changing the magnetic field, the position of the surfaced should be

checked again using this gate-shorting technique.

One limitation of the coarse approach procedure discussed above is that it relies
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heavily on the capacitive upturn seen with blunt tips. With sharp tips, the upturn

is very small or even non-existent (see figure 2-22(b)), and thus it is impossible to

get into range without smashing them. (For figure 2-22(b), the tip was only mildly

smashed during coarse approach because the tip happened to come in contact with

the metal gate during walking, and the coarse approach was immediately stopped

and the tip retracted.) Thus to perform experiments with a sharp tip, integration of

our capacitive sensor with another type of surface detection, such as a tuning fork

AFM sensor [103, 104, 105, 62, 106], would be needed.

2.9 Producing blunt tips with a controlled geom-

etry

During the course of our investigation of the 2D electron system using SCA, it became

clear that it was very advantageous to work with large tips. While sharp tips would

in theory allow a higher electrostatic resolution, the charging signal was much too

weak due to their smaller capacitive coupling, and images suffered from poor signal

to noise ratios. Furthermore, during one cool-down, images taken with a tip that

was blunted in-situ showed an intricate and reproducible charging pattern in the

quantum Hall regime after applying a DC bias voltage (see data in appendix C). The

patterns showed a very systematic dependence on the bias voltage and the magnetic

field, suggesting a link to the physics of the 2D electron system. Patterns like these

were never seen with sharp tips, and were so striking and reproducible that we were

determined to understand them.

It became clear that what was needed was a method for producing very large,

blunted tips in a controlled and reproducible fashion. Experimentation with evap-

orative coating of sharp tips failed to produce tips that were blunt enough for our

needs. An extensive literature search turned up a journal article [107] describing an

electrochemical etching procedure for producing a tungsten tip with a large radius of

curvature for nanoindentation studies of soft polymers. This method work well, and
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was adopted and modified to suit our needs.

The procedure is very similar to etching methods used to produce sharp tips

[108, 109, 110, 111]. A length of tungsten wire is lowered ∼2-3 mm into a 1M NaOH

solution. The wire is attached to a Variac AC power supply, and a tungsten evapo-

ration boat is placed in the solution as a counter-electrode. A voltmeter is used to

measure the AC current during the etch, which is recorded by a computer through a

serial interface. The Variac is configured to give a 30 VAC voltage and is then turned

on. At this point, hydrogen bubbles begin to evolve at the surface of the tip. Over

time, the current decreases as the tip metal is removed, and eventually the current

goes to zero, indicating that the etching is complete.

Figure 2-27(a) shows a recording of the current versus time during the etching.

The current trace shows several abrupt drops, which are likely a result of sudden

movements of the meniscus of the NaOH solution. Figure 2-27(b) shows an SEM

image of a tip produced by this type of etch. The tips produced by this etch are

generally too sharp for our needs, typically with rmax ∼ 500 nm. In order to reliably

produce blunter tips, a second “polishing” etch was performed. Here, the Variac

voltage is lowered to 5 VAC, and the tip is lowered again into the solution ∼ 3 mm.

The Variac is then switched on and the tip is allowed to etch for another 30 seconds.

Before the current drops to zero, the power is shut off and the tip is removed and

rinsed in deionized water. (This last step is quite important: without it, the tips will

be contaminated with NaOH crystals, which are clearly visible in the SEM.) After

this second polishing etch, the tips show a reproducible ∼2-3 µm radius of curvature

with a very smooth and shiny surface, as shown in the optical and scanning electron

microscope images in figure 2-27(c) and 2-27(d).

Before use, all tips were imaged in a scanning electron microscope. Knowing the

exact shape of the tip was crucial for understanding our remarkable results, and allows

us to compare our experimental data quantitatively with results from simulations we

have developed of the interaction of the tip with the disordered quantum Hall liquid.
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Figure 2-27: (a) A recording of the AC current during the electrochemical tip etch.
Sudden movements of the meniscus of the etchant down the tip result in sharp drops
in the etching current. (b) An SEM image of a tip after the etching. The radius of
curvature ranges from as small as 90 nm to as large as 500 nm. In order to produce
blunter tips, a second “polishing” etch is performed. After this second etch, the tip
has a very smooth surface and a typical radius of curvature of 3 µm, as shown in the
optical microscope and SEM images in (c) and (d).
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Chapter 3

Imaging Transport Resonances in

the Quantum Hall Effect

In this chapter, we describe the central result of our research: the experimental obser-

vation of transport resonances in the quantum Hall effect [112]. In this work, we have

discovered a fundamental mechanism for transporting charge in the localized quantum

Hall fluid. This transport mechanism consists of single-electron resonant tunneling

through small quantum dot islands. Our observations show that this resonant trans-

port dominates all other ways to move charge through the localized quantum Hall

liquid, and likely plays a significant role in transport at quantum Hall plateaus.

We begin with a brief background on localization and incompressible strips in

the quantum Hall effect. We then present our experimental data, and show how

the images we observe point to this resonant tunneling mechanism. We conclude

with a discussion of how this resonant tunneling mechanism impacts transport and

localization in the quantum Hall effect.

3.1 Background

Electrons confined to move in 2 dimensions that are placed in a very large perpendicu-

lar magnetic field have a remarkable property: the Hall resistance becomes quantized

to a value that depends only on fundamental physical constants [113]. This quanti-
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zation of the Hall resistance is remarkably robust: it is insensitive to all properties

of the system used to create the 2D electron gas, including the size of the sample,

the properties of the host semiconductor crystal, and even the level of disorder. The

origin of this robust quantization stems from the localization of electrons in high

magnetic fields. Laughlin [13] showed that as long as the electrons in the bulk of the

sample are localized so that their diagonal conductivity σxx vanishes, the Hall resis-

tance will always be exactly quantized. While the quantization is understood, there is

no consensus on a microscopic picture of this localization. The models of localization

can be broadly separated into two categories: those that do not account for electron

interactions [46] in which electrons are localized in single-particle drift trajectories

around the disorder potential, and those that include the first order corrections due

to electron interactions in the form of non linear screening [52, 53].

The model of localization that we will consider is one that arose from the non-

linear screening theory proposed by Efros [47, 48, 49] to describe the quantum Hall

effect. The non-linear screening theory is based on a very simple idea: when a Landau

level is only partially filled, the density of states is very large. This large density of

states means the system is compressible and very effectively screens potential fluctu-

ations, acting as a “perfect” metal. In contrast, when a Landau level is full, there

is a gap at the Fermi surface: the system cannot screen at all, and acts as an in-

sulator. Chklovskii et al. [51] applied this theory to a depleted edge of the 2D

electron system and found that the density gradients found there produced regions

of compressible electrons where a Landau level was locally partially filled, separated

by “incompressible strips” where a Landau level was locally full, as shown in figure

3-1. In the non-linear screening models [52, 53], localization occurs when one of these

incompressible strips spreads to the center of the sample, forming a percolating net-

work that localizes electrons in the bulk, as shown in figure 3-2. In this picture, the

strong localization that results in the quantized Hall resistance arises from the large

resistance to transporting charge across this network of incompressible strips.

Relatively few experiments have been designed to directly probe the resistance

of incompressible strips. In one such experiment[114], sharp resonances were seen in
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Figure 3-1: Non linear screening at a depleted edge of the 2DES producing an al-
ternating pattern of metallic-like compressible strips and insulating incompressible
strips. Panels (a), (b) and (c) on the left shows the “single particle” model of the
edge of the quantum Hall liquid. The potential is taken to be the same as obtained
from the self-consistent potential at zero magnetic field,and Landau levels are simply
filled up to the Fermi energy. This leads to infinitely narrow compressible regions
where the LL energies pass through the Fermi energy, which are referred to as “edge
states”. The majority of the sample is incompressible, and locally there is exactly
one Landau level filled. When the self-consistent screening modifications due to a
quantizing magnetic field are included, shown in panels (d), (e), and (f), the picture
is changed dramatically. The compressible regions now acquire finite width due to the
higher degree of screening provided by a partially filled Landau Level. These wide
compressible regions are now separated by narrower incompressible regions. This
transition is driven by electrostatic forces that are associated with trying to create
the density profile shown in (c), which would involve a significant electrostatic energy
penalty. After this reconstruction, the density profile follows as closely as possible
the density profile at zero magnetic field in order to minimize the electrostatic energy.
Figure taken from Chklovskii, Shklovskii, and Glazman [51].
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Figure 3-2: Localization of electrons in the bulk by a percolating incompressible strip.
Figure shows simulations of the electron density in a 3 µm wide etched Hall bar at
high magnetic fields. The average electron density is 1.5×1011 e/cm2, and the disorder
model includes 1.5× 1011 cm−2 randomly ionized donors with a 50 nm setback. (For
details of the simulation, see chapter 5.) In panels (a) through (f), metallic regions
where the local filling factor is νlocal < 1 are shown in pink, incompressible regions of
νlocal = 1 are shown in white, and metallic regions of νlocal > 1 are shown blue. (a) At
low magnetic fields, a relatively narrow incompressible strip separates metallic states
at the edge from the bulk. As we increase the magnetic field, this incompressible
strip spreads to the center of the sample forming a percolating network that localizes
electrons when νbulk is close to an integer. At these fields, the Hall resistance becomes
quantized. As we increase the magnetic field further, shown in (e) and (f), the metallic
ν < 1 state begins to percolate and the Hall voltage quantization is lost.
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transport across the strip as a function of a local gate voltage that modulated the

electron density. The resonances appears as sharp peaks in the IS conductance at

certain magnetic fields and gate bias voltages. The exact origin of the resonances

were not understood. Based on an observation that the conductance peaks followed

trajectories in a magnetic field vs. electron density plot that ran parallel to integer

filling factors, Chklovskii [115] argued that the resonances were the signature of single-

electron tunneling through a Coulomb blockaded island in the incompressible strip.

The reasoning is quite simple: consider a density fluctuation creating a small island

inside the incompressible strip, as shown in figure 3-3(b). If this island is small and

only weakly coupled to its surroundings, the number of excess charges on the island

will be quantized. According to the Coulomb blockade picture, the island will then

show resonances whenever the charge on this island is changed by one electron. In

the non-linear screening model, the excess charge on the island is set only by the

difference in the local density from integer filling, as illustrated by the hatched area

in figure 3-3(b). In this way, the Coulomb blockade model predicts that trajectory

of the resonance peaks in a magnetic field vs. electron density plot will be quantized

and run parallel to integer filling factor1.

A similar phenomenon arises in narrow Hall bars. In a narrow Hall bar, the net-

work of ISs that produces localization in wide Hall bars is replaced by a single IS

that separates the two sides of the sample. Any transport that occurs across this

IS will destroy the quantization of the Hall resistance. Thus, indirectly, transport

in narrow Hall bars also probes the resistance of an IS. In contrast to the smooth

transitions between Hall plateaus seen in large samples, narrow Hall bars show sharp,

reproducible fluctuations (see [118] for a comprehensive list of references). Of par-

ticular interest is the work of Cobden et al. [119], which was performed on a gated

device. By mapping the trajectory of the the fluctuation peaks as a function of both

magnetic field and density, the fluctuations were seen to distinct come in groups that

ran exactly parallel to integer filling factor. This behavior was not consistent with

1The same argument was presented in [116] as evidence for the nature of localized states at
quantum Hall plateaus.
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Figure 3-3: Models of a localized state inside a narrow Hall bar. Panel (a) shows the
localized state in the single-particle picture, as described in [117]. In this picture, the
potential is assumed to have the same form as in zero magnetic field. The localized
states always take the form of rings that encircle hills and valleys in the potential.
Resonances occur each time a single-particle orbital passes through the Fermi en-
ergy. Including non-linear screening, as shown in (b), the self consistent potential is
modified, acquiring flat regions where a Landau level is partially filled. In this case,
a new type of localized state can occur in the form of a small Coulomb-blockaded
island. This localized state has the shape of a disc, not a ring, and resonant tun-
neling through it is governed by the total charge on the island, not the number of
single-particle orbitals it encloses. This charge is determined only by the difference in
the local density from integer filling, shown by the hatched area in (b). This leads to
resonance peaks that follow trajectories parallel to integer filling factor in a magnetic
field vs. density plot.
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previous single particle models [117], which predict localized states of the form shown

in figure 3-3(a). In analogy with Chklovskii’s ideas, Cobden et al. suggested that the

results demonstrated a different type of localization in the quantum Hall effect, driven

by Coulomb blockade of small compressible islands inside incompressible strips.

While many of the narrow Hall bar experiments were performed on relatively low

mobility samples (see [118] and references therein), fluctuations in both the integer

and fractional quantum Hall regimes were seen in high mobility samples in earlier

experiments by Simmons et al. [120, 121]. In the 1/3 and 2/3 fractional plateaus,

they observed that the quasi-periodicity of the fluctuations was triple that of those at

integer plateaus. Interpreting the results in the context of the single-particle model

[117], the authors suggested that these were evidence of h/e∗ Aharonov-Bohm type

oscillations of the magnetic bound states, where e∗ is the fractional charge of the

quasiparticles at fractional filling factors. However, it was later pointed out [122]

that fractionally charged quasiparticles must also be treated with fractional statistics:

including this effect, the Aharonov-Bohm type oscillations will have a periodicity of

h/e, not h/e∗. It is interesting to note that if we re-interpret these early results in

the context of the Coulomb blockaded island model, they constitute the first true

experimental observation of fractional charge.

Finally, recent remarkable experiments [116] measuring chemical potential fluc-

tuations at Hall plateaus using fixed and scanning single-electron transistors have

conclusively demonstrated the existence of such Coulomb blockaded islands in both

the integer [116] and fractional [123] quantum Hall regimes, but do not address their

influence on transport.

3.2 Imaging the resistance of an Incompressible

Strip

The works discussed in the previous section concerning transport across incompress-

ible strips all relied on “bulk” probes, such as measuring the resistance between two
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Figure 3-4: For bulk filling factors less than one, applying a positive DC bias voltage
attracts electrons to the region under the tip, creating a bubble of compressible elec-
trons in the ν > 1 state, separated from the bulk by an incompressible ring (IR) at
ν = 1. In order to move across the incompressible strip, electrons from the bulk must
tunnel across a triangular tunnel barrier formed from the energy gap between the two
Landau levels, which presents a large resistance to charging the central bubble.

terminals of a Hall bar or measuring the capacitance of a large metal pad to the

2D layer. As such, it is difficult for these experiments to determine the microscopic

origin of the observed behavior, and only speculation can be made as to what is really

happening on a microscopic scale.

In this section, we introduce a new technique that images transport across incom-

pressible strips directly on a microscopic scale. We use a scanning charge accumula-

tion microscope to probe the resistance of a tip-induced mobile incompressible strip.

By applying a DC bias voltage to our tip, we can create the situation shown in figure

3-4. When the bulk filling factor is less than integer (ν = 1− ε), applying a positive

voltage to the tip attracts electrons to the region under the tip. For a sufficiently

large positive voltage, a “bubble” of electrons is in the ν = 1 + ε state in the region

under the tip. The bubble is separated from the surrounding 2DES by a ring shaped

incompressible strip that we will refer to as an “incompressible ring” (IR). By detect-

ing the charging of the bubble in response to an AC excitation applied to the sample,
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Figure 3-5: (a) A 10 × 10 µm in-phase charging image taken at νbulk = 0.89 (B =
7.0T) with a bias of +1.5V applied to the tip. The image is generally dark, but is
penetrated by bright arcs at positions where the IR becomes leaky. (b) Intersection
of the IR with hotspot of fixed position in the 2DES creates the arc patterns shown
in the image in (a) that reproduce the shape of the IR inverted through the hotspot.

we directly measure the resistance of the IR. Moving the tip, the bubble and ring

translate together, producing an image that is a map of the resistance of IRs formed

at different locations in the sample.

Figure 3-5(a) displays an image of the in-phase component of the charging signal,

taken with the 2DES at filling factor νbulk = 0.89 and a positive bias voltage applied to

the tip. The gates appear as regions of high capacitance in the top right and bottom

left areas of the image. In the region of the image where the tip is over the 2DES, a

bubble forms from a local accumulation of electrons in the ν > 1 state. The image is

generally dark due to the large resistance of the surrounding IR, with the exception

of sharp, bright elliptical arcs. The patterns repeat at uncorrelated positions in the

image. In the absence of a magnetic field, the images are completely featureless. The

observed arcs appear only at magnetic fields near integer filling factors and upon

applying a bias voltage of an appropriate polarity for the formation of a bubble.

We interpret the arcs that we see in the image with the following model. The arcs

in the images correspond to the locus of points at which the IR intersects a “hotspot”
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Figure 3-6: (a), (b) 3 × 3 µm charging images taken at νbulk = 0.83 (7.5 T) and
Vtip = +1.5V. Note the inversion of the contrast in the lagging-phase images at the
center of the filaments. Circles in the drawn in the images show tip positions where
the IR resistance varies to result in the in-phase and lagging-phase signals shown by
the matching colored arrows in the RC model shown in 3-7. The white arrows show
narrow sub-filament fringes seen in many of the arcs.

in the 2DES, as shown in figure 3-5(b). The arcs in the images directly reflect the

shape of the tip, and the hotspots are located at the centers of the ellipses suggested

by the arcs. The size of the IR created by the tip depends on the magnetic field and

the bias voltage, and can be directly measured from the size of the arcs in the image.

The elliptical shape of the arcs is most likely a result of asymmetry in the tip etching

procedure2.

3.3 What are the hotspots?

The hotspot model explains very well the shape of the arcs seen in the image, but

is does not say anything about what the hotspots are or how they cause the IR

resistance to drop. In order to answer these questions, we need to take a closer look

at the data.

Figure 3-6(a) and (b) show in phase and 90◦ lagging-phase charging images at

2Miscalibration of the lateral scan tube coefficients may also play a role
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Figure 3-7: In-phase and lagging phase signals are shown for a simple RC model where
the bubble’s self capacitance to its surroundings charges through the resistance of the
IR. Colored arrows indicate the places on the RC curve marked by the matching
circles in figure 3-6.

ν = 0.83 (7.5T) with a tip bias of +1.5V taken at a high spatial resolution. There are

two remarkable features revealed in these scans: the first is that the lagging phase

signal inverts contrast at the center of the arcs. The second is that on small length-

scales, the arcs show a fine structure consisting of striation-like oscillations. These

two observations will lead us to a model for the origin of the hotspots.

The inversion of the contrast in the y-phase data gives us quantitative information

about the magnitude of the drop in the IR resistance. We can consider the charging

of the bubble in a simple RC model where the capacitance of the bubble to its

surroundings charges through the resistance of the IR. Figure 3-7 shows the expected

behavior in this model of the in-phase and lagging-phase signals as a function of the

RC charging time of the bubble. Our measurements are performed at fixed frequency:

any changes in the charging signal must arise from changes in the product RC. The

area of the bubble is fixed only by the tip voltage and the magnetic field, and as

can be seen from the uniform radius of the arcs in the images, can be taken to be

approximately constant. This allows us to directly relate changes in the charging

signal to changes in the IR resistance.

Three positions are marked by colored circles in figures 3-6(a) and (b). At these
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positions, the IR resistance varies to result in the in-phase and lagging phase signals

shown by matching colored arrows in 3-7. In the green circles, the IR has a low

resistance and the bubble nearly fully charges and discharges during the cycle of the

excitation. The blue circles correspond to at least 10,000 times higher resistance and

the bubble does not charge at all. Remarkably, displacing the IR by 100 nm causes

its resistance to change by more than four orders of magnitude.

We can also use this data to estimate the absolute value of the IR resistance. The

lagging phase data in figure 3-6(b) demonstrates that the positions where the bubble

does not charge correspond to RC charging times that are far in excess of the period

of the AC measurement. We can roughly estimate the self-capacitance of the bubble

from its size: a 2 µm bubble in GaAs gives a self capacitance of 1 fF3. Estimating the

product ωRC to be at least 100 from the data gives a value of at least 100 GΩ for

the resistance of a pristine IR. The intersection of the IR with a hotspot can cause

this resistance to drop abruptly to ∼ 10 MΩ.

The second clue to the origin of the hotspots is our observation of radial oscillations

of the charging signal inside the arcs. Upon magnification, many of the filaments

show these remarkable striations down to astonishingly small length scales. Figure

3-8 shows images where spacings as small as 10 nm were seen. This length scale is

both smaller than the Bohr radius in GaAs and the magnetic length.

Motivated by these two observations, along with the fact that the hotspots appear

at uncorrelated positions in the images, we propose the following model. A hotspot

arises from a short length-scale density fluctuation in the 2DES, which creates a small

quantum dot (or anti-dot) island embedded in the IR as shown in figure 3-9. Electrons

can then resonantly tunnel across the IR through the dot, causing the IR resistance to

drop dramatically. This model also explains explains the observed striations. Since

the island is small and is only weakly coupled to its surroundings, the charge on

the island will be quantized. The fringes results from Coulomb blockade of transport

through the dot. The dot combined with the bubble acts as a single-electron transistor

3We can calculate this number more accurately from our electrostatic simulations in chapter 5.
From these, we also obtain bubble self-capacitances on the order of 1 fF.
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Figure 3-8: (a), (b) 3× 3 µm in-phase and lagging phase images taken at νbulk = 1.1
(5.5 T) and Vtip = −1.5V. Many narrow oscillations are visible in these arcs in
these images. (c), (d) Ultra-high resolution scans (200x200 nm) showing oscillation
structures down to length scales comparable to and smaller than the magnetic length.
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Figure 3-9: (a) Density profile (top) and Landau level energy profile (bottom) of a
short length-scale fluctuation creating a quantum dot island inside the IR. Dotted,
gray, and solid lines (bottom) depict empty, partially filled, and filled Landau levels
respectively. Resonant tunneling through this dot leads to a dramatic reduction of
the IR resistance. (b) Top view of the island inside the IR. (c) The charge on the
island is quantized, and can only change in increments of one electron. The bubble,
island, and bulk act as a single-electron transistor.
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Figure 3-10: Starting with νbulk > 1 and applying a negative bias voltage to the tip,
we can create a bubble from an accumulation of holes in a lower filled Landau level.

(SET), with the bulk 2DES as the source contact and the bubble as the drain contact.

The SET island is embedded in the IR, and is gated by electric fields from the tip,

leading to discrete changes in its occupancy as the tip is moved, or as the DC bias

is changed with the tip at a fixed position. Note that the fact that we observe a

conductance enhancement implies that this single-electron resonant tunneling is a

coherent process, as Coulomb blockade with incoherent tunneling, such as seen in

metal SETs, results only in a conductance suppression.

3.4 Imaging the resistance of a ν = 1 IR at lower

magnetic fields: Creating a hole-bubble

We can also probe the resistance of a ν = 1 IR by moving to a magnetic field with

νbulk > 1 and reversing the polarity of the bias voltage on the tip. This will deplete

locally under the tip to produce an accumulation of holes in a lower filled Landau

level (a “hole bubble”), as shown in figure 3-10. Similarly to an electron bubble, this

hole bubble is isolated from the bulk by a ν = 1 incompressible strip. This allows us

to image the resistance of an incompressible strip formed at lower magnetic fields.

Figure 3-11 shows in-phase and lagging phase hole bubble images taken at ν = 1.1

(B = 5.5T). As can be seen from the images, the hole bubble IR has a much lower

resistance on average, suggesting a significantly reduced tunnel barrier formed from
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Figure 3-11: 9×9 µm high resolution hole bubble images. Hole bubble images display
a spectacular tangle of arcs, implying a very high density of active hotspots. Arrows
denote a place in the image where the IR does not intersect any hotspots. The IR
has a high resistance at this position, producing a dark signal in both the in-phase
and lagging-phase images.

the exchange-enhanced spin gap at these magnetic fields. A careful examination of

the lagging phase data shows that this is not simply on overall reduction of direct

tunneling across the IR: in particular, there are still places where both the in-phase

and lagging-phase signals are dark, indicating that the IR resistance is still ∼ 100

GΩ. The increase in the brightness of the lagging-phase signal in the hole bubble data

occurs instead as the superposition of a very high density of hotspot arcs. Thus, it

seems that the reduction of the energy gap has resulted in an increased susceptibility

of the IR to the formation of active quantum dot islands. Note also that the arcs

in the hole-bubble images typically show many more Coulomb blockade oscillations,

suggesting that the islands in the hole-bubble IR are larger in size.

To confirm that the difference between the electron and hole bubble images is

due to the magnetic field and not associated with depleting vs. enhancing under the

tip, we have used a global backgate to deplete the sample and compare hole bubble

and electron bubble images taken at the same magnetic field.. Figure 3-12 (a), (b)

and (c), (d) show in-phase and lagging-phase electron and hole bubble images with a
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Figure 3-12: Comparing electron and hole bubble images at the same magnetic field.
(a),(b) In-phase and lagging-phase hole bubble images at 5.5T at an electron density
of 1.5 × 1011 cm−2. (c), (d) Electron bubble images at 7.12T at the same density.
In (e) and (f), the sample density was lowered to 1.16× 1011 cm−2 to allow electron
bubble images to be taken at the same magnetic field as the hole bubble images in
(a) and (b).

density of 1.5×1011 e/cm2 at 5.5T (ν = 1.1) and 7.12T (ν = 0.87). As usual, the hole

bubble data shows many more resonances, as can be seen by the overall brightness

in the lagging-phase images. In (c), we have lowered the electron density globally to

1.16 × 1011 so that ν = 0.87 occurs at 5.5T. Upon doing this, the electron bubbles

images show a number of resonances comparable to in 3-12(a), as can be seen by the

brightness of the lagging-phase image, demonstrating that the difference in the hole

bubble images is due only to the lower magnetic field.

Another feature that is prevalent in the hole bubble data is a bright, fully charging

region that runs parallel to the gate, as can be seen in figure 3-12(a). In this area of

the image, the charging signal recovers to the full value seen at zero bias, and no arcs

are seen. The interpretation of this feature is quite straightforward: due to the work
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function difference between the metal topgate and the 2DES, the density under the

gate is slightly depleted. The “bright edge” in the image corresponds to the position

where the ν < 1 hole bubble merges with the ν < 1 region under the gate. Once this

happens, we no longer have to traverse an IS to charge the region under the tip. The

distance that this region extends out from the gate is given by the radius of the IR,

and correlates well with the size of the arcs in the image.

There is also a feature that runs parallel to the gate edge in electron bubble

images, visible in figure 3-5(a). In these images, the charging signal is only partially

enhanced and arcs frequently penetrate the area. This feature in the electron bubble

images results from the screening of the electric fields from the tip by the gate: when

the tip is over the center of the sample, the IR is elliptical in shape and has a width

set by the density gradient from the tip. As we move close the gate, the DC fields

from the tip are screened and the IR takes on a “D” shape. The straight edge of the

“D”-shaped IR is formed from the steeper density gradients from the gate, giving a

narrower strip. This narrowing of one side of the IR produces the partial enhancement

of the charging signal.

3.5 Frequency Dependence

As the IR goes on and off resonance, the charging time of the bubble varies by four

orders of magnitude. In our measurement, we will only observe arcs in the charging

images if this charging time is varying in a range of values that is near the inverse

of our measurement frequency. For the case of a ν = 1 electron bubble IR, we were

remarkably lucky: it just so happened that the RC charging time was varying in

a range that started from well below to well above the inverse of the measurement

frequency at which we have optimal charge sensitivity. The images that resulted

showed the maximum possible variation of the charging signal at a measurement

frequency where we had the best signal to noise ratio.

In general, we will not be so lucky, and we may have to change our measurement

frequency in order to observe IR resonances. Changing the frequency, we can adjust

98



)PMF�#VCCMF &MFDUSPO�#VCCMF
*O�QIBTF -BHHJOH�QIBTF *O�QIBTF -BHHJOH�QIBTF

�
�
�L
)
[

�
�
�
�L
)
[

�
��
�
�.

)
[

Figure 3-13: Frequency dependence of the resonance images at ν = 1. The left two
panels show 9 × 9 µm in-phase and lagging-phase hole-bubble images taken at 5.0T
(ν = 1.26) at +1.75V. Images were taken at 40 kHz, 200 kHz, and 1.16 MHz. The
right panel shows the same measurements for an electron bubble at 7.5T (ν = 0.83)
with a tip bias of -1.75V.
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the range of charging times we are sensitive to, allowing us to observe resonances

from greater or fewer hotspots. This is shown in figure 3-13 for both ν = 1 electron

and hole bubble IRs. In both sets of images, the charging time is slow, and so by

decreasing the measurement frequency we observe more resonances. There are two

factors that make such frequency dependent measurements difficult: the first is that

although we do have the freedom to change our measurement frequency by two orders

of magnitude, this does not significantly change the number of resonances we are

sensitive to since the resonances themselves are already modulating the charging rate

by four orders of magnitude. The second is that our signal to noise ratio gets worse

at both low frequencies due to 1/f noise and at high frequencies due to interference

noise (see section 2.2). This limits the practicality of working near the limits of our

frequency range.

3.6 Behavior of the imaged arcs with bias voltage

and magnetic field

We have discussed the interpretation of our images in the context of a model where

we probe the resistance of a ring shaped IS created by electric fields from the tip. This

model makes very specific predictions about how the size of the arcs in our images

should change with tip bias voltage or with magnetic field. If our interpretation of the

data are correct, we should observe that changes in the size of the arcs upon varying

magnetic field or tip bias are consistent with these predictions.

Figure 3-14 shows a panel of images from a hole bubble bias voltage sweep taken

at a magnetic field of 5.5T (ν = 1.1). As we are starting out with ν > 1 in the bulk,

applying a positive bias voltage to the tip does not create a bubble. All scans with

positive tip biases at this magnetic field are completely featureless. At null voltage

and small negative tip voltages, we also see no structure, as the local depletion is

not sufficient to empty the partially filled Landau level. At a particular threshold

voltage we start to barely deplete to ν = 1: at this voltage, the image shows weak,
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Figure 3-14: A sequence of images from a hole-bubble bias sweep. The 10 × 10 µm
images show the in-phase charging signal at 5.5T for the tip bias voltage indicated in
the top right of the images.

patchy dark spots as the ν = 1 region under the tip forms and disappears at different

positions in the sample. Beyond this threshold voltage, arcs appear in the image,

indicating the formation of a well defined IR. Making the bias voltage more negative

repels more electron from under the tip. As a result, the IR ring increases in size, as

do the arcs we observe in the images.

In addition to the change in the diameter of the arcs with bias voltage, we also

observe a change in the contrast between the charging and uncharging signal levels in

the images in figure 3-14. To show this more quantitatively, in figure 3-15 we plot the

histograms of the images in 3-14. Below threshold, the histograms show two distinct

peaks associated with the signal level over the gate and the signal level over the fully

charging 2DES. Once we have formed an IR, a new peak forms at lower signal levels,

associated with the drop in capacitance from the uncharging bubble. As we make the

tip bias voltage more negative, the diameter of the IR and the area of the hole bubble

both increase. Correspondingly, we observe that the peak in the histogram from the
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Figure 3-15: The histograms of the images from 3-14, starting at -0.45V. (The tip
height drifted too far during the earlier scans to allow quantitative comparison of
histograms of these images). The histograms show peaks associated with the gate
signal level, the signal level of a fully charging region under the tip, and the signal
level of the uncharging bubble. As the IR increases in diameter, the capacitance drop
associated with the uncharging bubble increases. Drift of the absolute tip height as
a function of time can be seen as variations in the gate signal level.
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Figure 3-16: A panel of 10 × 10 µm in-phase charging images as a function of both
tip bias voltage (vertical) and magnetic field (horizontal).

uncharging bubble shifts to a lower capacitance value.

By performing bias sweeps at different magnetic fields, we can produce a series

of images that map out the full bias and magnetic field dependence of the data.

Such a dataset is shown in figure 3-16. For magnetic fields below Bν=1, features only

appear for negative bias voltages. For magnetic fields above Bν=1, arcs only appear

for positive bias voltages. Near Bν=1, electrons in the 2DES become strongly localized

and the region between the gates does not charge. At these fields, we observe features

even at null voltage that are associated with charge penetrating the localized ν = 1
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state from the compressible regions under the gate. However, even with no DC bias

on the tip, it appears that the interaction of the tip with the 2DES is still important,

as we observe features that are sharper than our electrostatic resolution. We do not

currently understand these results.

In addition to providing a comprehensive overview of the results, figure 3-16 also

allows us to accurately find the true null voltage that produces no DC perturbation in

the 2DES by finding the horizontal row that shows neither electron nor hole bubble

behavior at all fields.

3.7 Measuring the signal with the tip at a fixed

position

In addition to using the tip to produce spatial images of the 2DES, we can also

use the tip as a local probe of a fixed position in the 2DES, and measure changes

in the charging signal as a function of bias voltage or magnetic field. This has the

advantage that for this single position, we can spend much more time averaging a

measurement for a given bias voltage or magnetic field than if we are imaging a large

area. The interpretation of this measurement, however, can be tricky: to be certain

of the meaning of the features in the bias or magnetic field sweep, they should be

accompanied by an image for at least one bias and mangetic field showing the spatial

structure we are probing.

Figure 3-17 shows the in-phase and lagging phase charging signal for a bias sweep

taken at 7.0T, corresponding to ν = 0.89 in the bulk. For negative tip bias voltages

we do not form an incompressible ring and the charging signal is flat. Once we ap-

ply a sufficient positive voltage, an IR forms. The large resistance of the IR prevents

charging of the central ν > 1 bubble and we see a drop in the in-phase charging signal

with a peak in the lagging-phase signal. As we increase the bias voltage further, the

IR grows and eventually intersects a hotspot in the 2DES. The hotspot drastically

increases the conductance across the strip, producing a broad peak in the charging
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Figure 3-17: Electron bubble bias sweep at ν = 0.95 (6.63T) showing both the in-
phase (green) and lagging phase (blue) signals. As the IR forms, there is a drop
in the in-phase signal and a peak in the lagging-phase signal. Increasing the bias
voltage, there is a broad peak in the charging signal as the IR intersects hotspots in
the 2DES. The broad peak shows finer structure associated with Coulomb blockade
of the quantum dot island. The charging peak from the hotspot is superimposed on
a sloping background in the in-phase signal due to the increasing size of the area
enclosed by the IR.
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signal as the IR moves through the position of the hotspot. Superimposed on this

peak are smaller peaks from Coulomb blockade oscillations of the quantum dot con-

ductance. The hotspot charging peak is superimposed on a sloping background that

results from the increased capacitance change from a larger uncharging uncharging

bubble.

Repeating this bias sweep with the tip at the same fixed position but at different

magnetic fields, we can produce a color scale plot of the charging signal as a function

of bias voltage and magnetic field, shown in figure 3-18. Here, we see drops in the

charging signal in the lower right (upper left) regions of the plot corresponding to

the formation of an electron (hole) bubble IR. Making the bias voltage more positive

(negative), the IR grows and intersects hotspots, producing peaks in the charging

signal as we saw in figure 3-17. Changing the magnetic field, the hotspot peaks follow

sloped lines in the bias-field plot that converge on null voltage when νbulk = 1. Near

the center of the Hall plateau, the conductivity of the sample vanishes and there is

no signal. Applying a bias voltage does create a compressible bubble, but it cannot

charge because the bulk 2DES that surrounds it is localized.

By examining spatial images of the area around the position of the tip during

the measurement of figure 3-18, we can directly identify features in the color scale

plot with individual arcs in the spatial image. Figure 3-18(b) shows a 6x6 um scan

taken at 7.0T and +1.5V, corresponding to the lower right corner of the color scale

plot. In the image, two arcs are clearly identifiable. The two charging peak lines

on the electron bubble side of figure 3-18(a) result from the intersection of the IR

with the hotspots of these arcs (see caption of figure 3-18). At the magnetic fields

where hole bubbles are formed, the density of active hotspots is much higher (see,

for example, figure 3-11), and the charging peaks from individual hotspots cannot be

easily identified.
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Figure 3-18: (a) Color scale plot of the in-phase charging signal as a function of tip
bias voltage and magnetic field with the tip at a fixed position. The arrow on the
magnetic field axis shows the magnetic field chosen for the bias sweep shown in figure
3-17. Lines (i) and (ii) display the threshold for forming a hole and electron bubble
respectively. Dashed (dotted) lines indicate biases and fields where the IR intersects
a hotspot, allowing resonant tunneling into a hole (electron) bubble under the tip.
(b) 6x6 µm in-phase electron bubble image at 7.0T and +1.5V. The blue marker
shows the position of the tip during the measurement in (a). Two arcs are identified,
and the positions of the hotspots responsible for each arc are indicated. (c) The IR
intersects hotspot 1 at biases and fields given by line (iv) in (a). (d) At lower biases
the IR is smaller, and intersects hotspot 2 at biases and fields given by line (iii).
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3.8 Why Partial Rings?

In the hotspot model shown in figure 3-5, we would expect that the arcs in the

images would reproduce the entire shape of the IR, forming complete rings. However,

in our images, we see only partial rings, and do not seem to see rings that close on

themselves. The obvious question then becomes: why not?

An initial clue as to the possible origin of the partial rings comes from their

orientations in the images. Like the positions of the centers of the rings that denote

the positions of the hotspots, the “direction” that the partial rings point appears to

be random and uncorrelated. The uncorrelated positions of the hotspots was one of

the factors that led to the disorder-induced quantum dot model. Could disorder also

play a role in the reason why we see only partial rings?

The charge fluctuations that produce the quantum dot islands in the IR involve

length-scales smaller than the width of the IR. To estimate the IR width, we have

completed a series of electrostatic simulations that account for the geometry of the

tip as well as the nonlinear screening of the 2DES (see chapter 5. From these, we

obtain an IR width of 200–300 nm in the absence of disorder. Density fluctuations on

length-scales larger than the IR width appear as an additional local density gradient

superimposed on the density gradient from the tip. The width of an IS is inversely

proportional to the density gradient creating it [51]. Consequently, the local IR width

will vary depending on the relative orientation of the gradients from the tip and the

disorder.

Analysis of figure 3-19 explains our observation of only partial ellipses in the

context of such local IR width modulations. We compare electron and hole bubble

images taken at the same location. In switching from an electron to a hole bubble,

the local density gradient from the tip inverts. To obtain the same local IR width at

the location of the hotspot, the tip must be moved to the opposite side of the hotspot,

as shown in figures 3-19(d) and (e). Figure 3-19(c) shows a composite image formed

from an electron bubble image and a hole bubble image taken at the same location. In

places where a partial ellipse appears in the electron bubble image, a partial ellipse in
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Figure 3-19: (a) 15x15 µm in-phase electron-bubble image, taken at νbulk = 0.83 (7.5
T), Vtip = +1.75V. (b) 15x15 µm in-phase hole-bubble image at the same location
at νbulk = 1.26 (5.0T). A tip bias of −1.75V is chosen to produce an IR of the same
diameter as in (a). (c) Composite image constructed from (a) and (b) with hole-
bubble data in blue and electron-bubble data in red. Semi-transparent repeating
ellipses are overlaid as a guide to the eye. (d),(e) Schematics illustrating local IR
width modulation from disorder in (d) electron and (e) hole bubbles. The black
marker and arrow indicate the location of a hotspot and direction of a fixed local
density gradient. Colored arrows indicate the direction of the density gradient from
the tip.
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Figure 3-20: Applying a larger DC voltage to the tip does not necessarily increase
the density gradient at the position of the strip because the point where the density
crosses ν = 1 also moves out to a larger radial position. For this example, we show
two Lorentzian density profiles, one of which corresponds to a larger tip voltage than
the other by a factor of 1.5.

the hole bubble image appears on the opposite side of the hotspot. This remarkable

symmetry between the two images demonstrates that the partial ellipses arise from

the influence of longer length-scale disorder.

3.9 Testing the quantum dot island model: Imag-

ing with a large tip-induced density gradient

The evidence we have presented so far for the quantum dot resonance explanation

of the hotspots has relied on the magnitude of the conductance enhancement and

the observation of the Coulomb-blockade fringes. In the previous section, we showed

that the partials rings arose from IR width modulations from disorder. Another

possible explanation for the hotspots could involve an abrupt narrowing of the IR

from similar density gradients. While this by itself would not explain the fringes, it

would be consistent with our observation of partial rings.

One way to differentiate between these two models is to image with a much larger
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density gradient from the tip. Experimentally, increasing the density gradient from

the tip is not as simple as increasing the bias voltage on the tip. To see this, we

examine figure 3-20, which shows the shape of a density profile we may expect from

the tip perturbation. The density shown is flat directly under the tip and falls off

with Lorentzian tails as we move out in the radial direction. Increasing the bias

voltage will scale the entire curve. For any given radial position, this will increase

the magnitude of the density gradient, but at the same time, the IR will increase in

size, moving further out into the tail of the charge perturbations where the density

gradients are shallower. Without a detailed model, we may expect that increasing

the bias voltage may not narrow the strip, and could even make it wider. Simulations

show that for the tips we use, these two effects cancel to a good approximation, and

the width of the IR is independent of bias voltage. We can, however, increase the

density gradient by moving to a magnetic field further from ν = 1: to obtain an IR

of the same size then requires a larger charge perturbation, leading to larger density

gradients. Thus, in practice, the width of the IR is set only by the difference of the

bulk filling factor from the integer value at which the IR is formed.

To image the resistance of a ν = 1 IR with a steep density gradient from the tip, we

work at a magnetic field that is far from ν = 1. Figure 3-21 shows an in-phase charging

image taken at B = 7.9T (ν = 0.68) with a tip bias voltage of -2V. Remarkably, the

images show several complete rings. This indicates that the tip gradients at these

fields are indeed dominating the disorder gradients that produce the partial rings. It

also rules out any explanation of the conductance enhancement that involves a local

narrowing of the IR alone, since this would show at most half-rings.

The fact that we still see resonances in the images with such a large tip-induced

density gradient also sheds light on the exact way that the disorder gradients affect the

resonances. The electron-hole bubble symmetry discussed in section 3.8 demonstrated

that the observation of partial rings was a result of local IR width modulations from

disorder. It did not, however, determine exactly how these modulations were changing

the resonant transport through the dot. In particular, two possible scenarios are

shown in figure 3-22. In 3-22(a) and (b), the density gradients from the hotspot
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Figure 3-21: A ν = 1 electron bubble image taken at 7.9T (ν = 0.68) with a tip
bias voltage of -1.75V. In this data, the density gradient from the tip creating the
incompressible strip is large because we are far from integer filling. This large density
gradient dominates over disorder gradients, resulting in the appearance of complete
rings.
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Figure 3-22: Possible ways that modulation of the local strip width could change the
resonant conductance. In (a) and (b), the “hotspot” doesn’t fit in the narrow strip,
and we see resonance after widening of the strip. In (c) and (d), there is always an
island inside the strip, but modulating the strip width changes the coupling to the
island and the strength of the resonance.
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fluctuation are weak compared to those from the tip. With a narrow strip, the

fluctuation is too large to create an island that fits inside the strip, and instead only

deforms the shape of the strip. With a wider strip and a shallower density gradient,

the fluctuation can now create a quantum dot island. In this case, widening of the

strip enhances the conductance. In the second scenario shown in (c) and (d), the strip

is initially very wide. When the conductance is low, there is a quantum dot island

inside the strip, but resonant conductance through the island is small due to the weak

coupling. With a narrower strip, the dot is more strongly coupled to the bulk and the

bubble leading to more current. In this case, local narrowing of the strip enhanced

the conductance. The electron-hole bubble symmetry that we have observed does not

distinguish between the two. The fact that we observe complete rings with large tip

gradients demonstrates that it is narrowing of the strip that enhances the resonant

conductance, suggesting a wide strip scenario such as shown in figure 3-22(c) and (d).

Detailed simulations of incompressible rings in the presence of disorder will allow us

to determine the microscopic details of how this occurs.

3.10 IRs at other filling factors

In the results presented so far, we have concentrated on the resistance of an IR formed

at a local filling factor of ν = 1. We can also study IRs at other filling factors by

lowering the magnetic field. Figure 3-23 shows in-phase and lagging-phase images

taken with ν =1,2, and 4 IRs at the same position. The IR formed from the ν = 2

orbital Landau gap at 2.7T has a much higher resistance than the IR formed from

the ν = 1 exchange-enhanced spin gap at 5.4T. The ν = 2 image shows nearly no

signatures of active hotspots and the IR resistance is very high, as can be seen by the

dark signal level in the lagging-phase image. Lowering the magnetic field to 1.35T,

the IR resistance at ν = 4 drops to a value comparable to but still higher than that

at ν = 1, and weak filaments are seen.

Our proposed model for the hotspots considers resonances through small disorder

induced islands. Changing the magnetic field will not change the disorder-induced
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Figure 3-23: 7× 7µm images of the IR resistance at different filling fractions taken at
the same location. (a), (b) In-phase and lagging-phase charging images for a ν = 1
hole bubble at 5.4T. The image shows many filaments. (c), (d) ν = 2 hole bubble
images taken at 2.7T. The IR has a very high resistance and only a faint sign of one
resonance is visible in the top left of the lagging-phase image. (d), (e) ν = 4 hole
bubble images taken at 1.35T. The image now shows many resonances, although the
overall IR resistance is still higher than at ν = 1. In this sample, the IR at ν = 3 was
too leaky to be measured.
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density profile, which is determined by charge fluctuations in the donor layer. Thus,

we should in principle see the same hotspots at different filling factors. This is com-

plicated by the fact that the IR has vastly different resistances at different filling

factors, and so the number of “active” hotspots, where the IR resistance drops into

our measurable range, varies significantly. This is clearly shown in figure 3-23, where

many more arcs are seen in the ν = 1 image. Figure 3-24 shows images taken at

ν = 1, 3 and 4 in a different sample, where the IR resistance at ν = 3 was larger,

allowing resonances to be resolved. Careful examination of the images shows that

there is a good correspondence between the positions of active hotspots at different

filling factors, supporting the disorder induced quantum dot model. Interestingly, the

strongest hotspots at ν = 1 are not necessarily the strongest seen at ν = 3 and ν = 4.

By measuring the tunneling resistance of the IR, we have a unique probe of the

microscopic orbital and exchange-enhanced energy gaps in the quantum Hall system.

The technique should also be applicable to IRs formed at filling factors of the frac-

tional quantum Hall effect. Our samples typically show a weak signature of the ν = 2
3

state in the bulk magnetocapacitance measurements. Unfortunately, the IR at ν = 2
3

was much too leaky to be detected in our experiments. Lower temperatures and

higher magnetic fields available in our next-generation microscope for the dilution

refrigerator should allow us to study the microscopic energy gaps and transport in

the fractional quantum Hall effect.

Another feature to be noted about images at lower filling factors is that the fea-

tures in the images are generally “softer” (see in particular, figure 3-23(e)). Because

of the reduced Landau level degeneracy at low magnetic fields, the magnitude of the

density perturbation from the tip is smaller for an IR of the same size. Consequently,

the density gradients from the tip creating the IR are much weaker, and are more

easily perturbed by disorder, producing the softer images. At these lower fields, with

large DC bias voltages we also sometimes observe two concentric arcs in the images

that have the same center but very different diameters, indicating the presence of a

“double ring” created by the tip where the density perturbation passes through two

filling factors.
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Figure 3-24: 6 × 6 µm images taken at the same position showing hotspots at the
same locations. On this cooldown of a sample from 12-16-03.2, the IR was much
more resistive for reasons that we do not understand. This higher resistance, however,
allowed us to image at ν = 3 where the IR had previously been too leaky. (a), (b)
In-phase and lagging phase ν = 1 hole-bubble images at B = 4.5T (ν = 1.2). (c),
(d) ν = 3 electron-bubble images at B = 2.0T (ν = 2.75). (e), (f) ν = 4 hole-bubble
images taken at B = 1.27 T (ν = 4.4). The ν = 3 and ν = 4 images show far fewer
resonances, but the positions of the hotspots correlate well with those seen in the
ν = 1 images.
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Figure 3-25: Images taken with highly resistive incompressible rings show a bumpy
modulation of the in-phase signal with no corresponding change in the lagging phase
signal. (a),(b) 5× 5 µm in-phase and lagging-phase ν = 1 electron bubble images at
high magnetic fields (7.9T, ν = 0.68). (c), (d) 5 × 5 µm ν = 2 hole-bubble images
taken at 2.4T (ν = 2.25). (e) When the bubble is uncharging, the capacitance from
the tip to the 2DES is reduced by the area inside the outer edge of the IR. Changes
in the shape of the IR will result in changes of the capacitance from the tip to the
fully charging region outside the ring, producing the observed bumpy modulation of
only the in-phase signal.

3.11 Features of the uncharging bubble

For ν = 2 IRs and the ν = 1 electron bubble IR at high fields, the IR resistance is

very large and the bubble does not charge for much of the area in the image. With

such uncharging bubbles, two interesting effects are observed. The first is a “bumpy”

modulation of the background in-phase charging signal, as shown in figure 3-25. This

bumpy modulation is seen only in the in-phase signal: the dark background of the

lagging-phase signal is completely flat. This suggests that this modulation is due

to changes in the geometric capacitance to the 2D layer and is not associated with

resistive effects.

This “bumpy” modulation arises due to changes in the area of the IR as we move

it to different places in the sample. A model showing the capacitances of the tip to

different regions of the 2DES is shown in figure 3-25(e). When the central bubble is
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Figure 3-26: Line cuts through the bumpy modulation seen in the in-phase images
showing strong hysteresis for a ν = 2 electron bubble at 3.1T (ν = 1.68). The two
colors represent forward and reverse scans. The line cut was repeated at several
different sweep rates. The sweep rate, in units of time per pixel, is quoted to the
right of the plot (line cuts are 512 pixels long). The time constant on the lock-in was
set at 500 µs. Curves with different sweep rates are offset for clarity.

uncharging, the capacitance from the tip to the 2D layer is reduced by an amount

proportional to the area enclosed by the outer diameter of the IR. As we move the

tip to different positions over the 2DES, the IR changes shape. A modulation of the

in-phase charging signal results due to a change of the geometric capacitance of the

tip to the outer fully charging 2DES.

With the very large IR resistances seen at ν = 2, we also observe hysteresis in the

bumpy modulation between the forward and reverse scans, as shown in the line cuts

in figure 3-26. While a hysteric lag in the tip position is expected from piezoelectric

scan tubes the differences shown in figure 3-26 are more than just a lateral offset,

and consist of qualitatively different traces. Lowering the scan speed to 10 ms/pixel,

the hysteresis disappears. This hysteresis is also connected to changes in the area

of the IR. In order to change the area of the IR, we must transfer charge across it.
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While this charge transfer is slow compared to our AC measurement frequency, it is

usually fast compared to the scan speed of the tip (∼ Hz). At ν = 2, the IR becomes

so resistive that this charge transfer is not fast enough to modulate the area of the

bubble even at the slow timescales associated with the tip motion. The data in figure

3-26 show that the charging time of the bubble approaches a timescale of ∼ 10 ms.

Using a bubble capacitance of 1 fF, this corresponds to a remarkable IR resistance of

10 TΩ. Very large incompressible strip resistances have also been observed in other

experiements [124].

It is interesting to note as well that non-equilibrium charge on the bubble will

result in an excess DC voltage across the IR. This transverse voltage will in turn

induce a large circulating dissipationless current in the incompressible states in the

IR. Thus, as we scan a bubble with a highly resistive IR quickly through the 2DES,

a large local fluctuating magnetization will be induced.

3.12 Excitation Dependence

Most of the data we have presented so far were taken with AC excitation amplitudes

of 10 to 15 mV. In the experiment the central bubble is only capacitively connected

to ground, and the voltage appearing across the IR is smaller than the AC excitation

through a capacitive “lever arm” reduction (see section 2.4). Our simulations show

that the voltage across the strip is about 10 times smaller than the AC excitatino

we apply to the 2DES, given a voltage drop of about 1 mV for a excitation 10 mV.

We have also taken images using different AC excitation amplitudes, ranging from

2.5 mV to 30 mV. Experimentally, we observe that increasing the amplitude of the

AC excitation decreases the resistance of the IR. If the IR has a very high resistance,

it is possible that the variations of the IR resistance due to the hotspot resonances

modulate the bubble charging times between values that are all outside of our range

of sensitivity. In this case, increasing the amplitude of the AC excitation can allow

us to decrease the bubble charging time, allowing us to see the effects from a larger

number of hotspots. This is shown very dramatically in figure 3-27. The figure shows
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Figure 3-27: 1.5× 1.5 µm hole bubble images taken at 4.5T (ν = 1.2) in sample 12-
16-03.2 showing an unusually strong excitation dependence. (a), (b) show in-phase
and lagging-phase images taken with a 16 mV excitation. The averaging time for the
image was 17 minutes. (c), (d) show in-phase and lagging phase images taken with a
4 mV excitation. In order to obtain a signal to noise ratio comparable to the 16 mV
images, the 4 mV images were averaged for 5 hours and 52 minutes.
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Figure 3-28: 1.5×1.5 µm electron bubble images taken at 6.9T (ν = 0.9) with varying
excitation amplitudes. The averaging times for each of the scans was adjusted to give
roughly the same signal to noise. These images were taken with a tip that was blunted
in-situ, resulting in filaments that were irregularly shaped.

the in-phase and lagging-phase images from a ν = 1 hole bubble IR at 4.5T in sample

12-16-03.2. For an unknown reason, the IR in this sample on the second cooldown

had an unusually large resistance. Because of this high resistance, the images showed

far fewer active hotspots than in the previous sample (12-1-03.2), or even the same

sample on a different cooldown. At 16 mV, the hole-bubble images shows a relatively

high density of active hotspots. Decreasing the excitation to 4 mV, the images show

far fewer resonances. Remarkably, however, the strongest hotspot still shows a strong

resonance at 4 mV in which the conductivity is still modulated by four orders of

magnitude. A careful inspection of the 4 mV images also shows faint signatures of

many of the other resonances seen in the 16 mV images.

The strong excitation dependence shown in figure 3-27 was not seen in all of our

cooldowns, and in particular was not seen in earlier experiments where we studied

the excitation dependence. Figure 3-28 and 3-29 show the excitation dependence of

electron bubble and hole bubble images respectively in sample 12-1-03.2. In these

images, decreasing the excitation amplitude did decrease the IR resistance but did

not affect the number of resonances that were observed. Since the hole bubble is quite
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Figure 3-29: 1 × 1 µm electron bubble images taken at 6.9T (ν = 0.9) with varying
excitation amplitudes. For these images, the averaging time at each excitation was
the same. These were taken with the same tip as in figure 3-28.

leaky, the resonances in figure 3-29 show up more strongly in the lagging-phase than

in the in-phase images. Also, it is interesting to note that the signal to noise does

not decrease upon decreasing the excitation until we reach the 2.5 mV images. The

reason for this is that in addition to increasing the total amount of charge induced

on the bubble, increasing the excitation also decreases the IR resistance, pushing the

charging times to lower frequencies. This results in less modulation of the charging

signal. This is shown more clearly in bias sweeps with the tip at a fixed position

shown in figure 3-30.

The effect of the AC amplitude on the IR resistance is also seen in the uncharg-

ing bubble hysteresis discussed in section 3.11. Increasing the amplitude of the AC

excitation in these experiments caused the hysteresis to disappear, suggesting that

the AC excitation is reducing the IR resistance even when no hotspot resonances are

seen.

As discussed in detail in section 2.4, for an uncharging bubble the AC excitation

translates into an AC voltage across the IR. The voltage across the IR in the fully

uncharging bubble limit is determined by a capacitive divider. Note, however, that
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Figure 3-30: Excitation dependence of a hole bubble bias voltage sweep at 5.5T. For
the measurement, the tip was positioned at the center of the scans shown in figure
3-29. The three peaks in the bias sweep are associated with the three filaments at the
center of the images moving past the fixed position of the tip as we change the bias
voltage. The data shows the calibrated signal, where the lock-in signal has been scaled
by the sensitivity to account for the varying AC excitation. Increasing the excitation
voltage decreases the IR resistance, resulting in different in-phase and lagging-phase
signals.
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Figure 3-31: A simulation of the electron flow in a high mobility heterostructure.
The accumulation of small angle scattering from the weak short length-scale disorder
results in caustics in the electron trajectory. Reproduced from Topinka et al. in
Nature 410 183 (2001) [125].

if the IR resistance drops, the bubble begins to charge, and the voltage drop across

the ring is reduced. In practice, the means that the voltage appearing across the

IR due to the AC excitation in our experiment is in some sense “self regulating”:

on resonance, it automatically adjusts itself, becoming pinned to the value that is

required to activate the hotspot. The maximum value it can adjust itself to is set

by the capacitive lever arm from the uncharging bubble limit. Thus, the effect of

increasing the AC excitation is to increase the maximum range of this self-regulating

voltage, allowing us to observe resonances from a larger number of hotspots.

3.13 Hotspots are not “defects”

It is important to emphasize that we believe that the hotspots are not simply “defects”

in a 2DES that has an otherwise smooth potential. In particular, the density of

hotspots shown in images such as in figure 3-11 is far too high to be associated

with impurities arising from background doping in a sample with as high a mobility

as ours. Furthermore, different filaments in the images show resonant conductance

enhancements that vary over orders of magnitude suggesting they are not associated

with an impurity of fixed strength.

We propose that the hotspots arise from length-scale fluctuations that arise natu-
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rally in high mobility heterostructures with remote ionized donors. This same disorder

was considered recently in the context of experiments mapping electron flow out of a

point contact using a scanning gate [125]. The effect of disorder on electron flow at

zero magnetic field is illustrated in figure 3-31, which shows a simulation of electron

flow out of the point contact in their experiment. The disorder shows both short

length-scale fluctuations, on the scale of the setback to the donor layer, as well as

longer length-scale hills and valleys, which can be seen as large gray and green areas.

Remarkably, the electron flow is dominated by the small angle scattering from the

short length-scale disorder: in several places, the electron flow is concentrated over

the top of one of these longer length-scale “hills”. At zero magnetic field, these short

length-scale fluctuations lead only to small angle scattering and smooth branching

electron flow [125] because the amplitude of the fluctuations ∆U is small compared

to the Fermi energy EF . In stark contrast, our work shows that at high magnetic

fields these weak short length-scale fluctuations have a drastically different effect,

creating Coulomb blockaded islands that enable resonant transport of charge across

ISs.

3.14 Summary

In summary, we have observed strong resonances in transport across ISs. Using local

imaging, we have determined that these resonances arise from the intersection of

the strip with fixed positions in the 2DES and are associated with the formation of

a small quantum dot island embedded in the incompressible region. These islands

are created by disorder, and imaging transport through them allows us to infer the

nature of the disorder in the 2DES, as shown in figure 3-32. On small length-scales

(∼100 nm), significant disorder exists, creating the islands in the IR. Fluctuations on

an intermediate scale are responsible for our observation of only partial rings in the

images. On larger length-scales (∼1 um), the amplitude of the disorder fluctuations

is relatively small, as evidenced by the uniformity of the size and shape of the rings

in the images.
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Figure 3-32: The arcs we see in the images can be thought of as a vector feild
describing disoder in the 2DES: the centers of each arc shows the position of a hotspot
fluctuation and the direction of a longer lenthscale fluctuation is described by an arrow
pointing to the strongest portion of the arc. The smooth and repeating shape of the
arcs suggests that the amplitude of large lengthscale fluctuations is relatively small.

Finally, the quantum dot islands created by the disorder have a dramatic effect

on charge transport across ISs. They provide at least 10 000 times the conductance

of tunneling directly across our IR, or equivalently, the same conductance of an ideal

IS that is more than 3 cm long. Their presence opens a conduction channel that

dominates all transport across narrow incompressible regions. This observation is in

agreement with ideas presented by Cobden et al. [119] for the origin of fluctuations

observed in narrow devices. Moreover, the impressive magnitude of the conductance

enhancement suggests that this resonant tunneling may act as the fundamental mech-

anism for transporting charge through the network of ISs in large samples, mediating

hops between larger compressible islands, as illustrated in figure 3-33. Such modi-

fications to hopping transport by resonant states have been considered in the case

of the disordered low density electron gas in MOSFETs without a magnetic field by

Popović et al. [126]. They found that although the number of such resonant hopping

paths are orders of magntitude fewer than direct hopping paths, the conductivity of

the resonant hopping paths are orders of magnitude higher, suggesting them as an

126



����NM

�A	 �B	

Figure 3-33: (a) The electron density profile at ν = 1, showing the localization of
electrons in the bulk by a percolating network of incompressible strips. Blue, gray,
and pink areas correspond to local filling factors ν > 1, ν = 1, and ν < 1 respectively.
The simulations show large compressible islands that are often separated by small
quantum dot sized islands, which could act as stepping stones for transporting charge
through the incompressible bulk. (b) A zoom of the area shown in the dashed box
in (a). The arrows indicate a preferred hopping path whose conductance could be
dramatically enhanced by resonant tunelling.

important part of the transport. To our knowledge, such a resonant tunneling mech-

anism has not been considered in theories describing transport around ρxx minima in

the quantum Hall effect.
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Chapter 4

Measuring the Capacitance of the

2DES to a Fixed Metal Pad

4.1 Motivation

In the experiments discussed in chapter 3, we imaged remarkable resonances in the

transport across an incompressible strip by measuring the charging of a central bubble

created by a bias voltage on our scanning probe. The ability to move the induced IR by

scanning the tip was crucial in determining the microscopic origin of the resonances.

The use of the scanning probe microscope, however, places some limitations on the

measurements we can perform. Due to arcing between the high voltage quadrants of

the piezo tubes at intermediate 3He pressures, it is not possible to run the experiment

in the Heliox system at temperatures other than the base temperature of 300 mK,

and thus it is not possible to study the temperature dependence of the features.

Furthermore, due to the random drift in the sample-tip separation, which can be as

large as 20 nm over a period of a few hours, the SCA microscope must be continually

interactively monitored to ensure that the tip does not smash into the surface. This

is very time intensive, and means that the experiment cannot be left alone to run

overnight or for multiple days.

To overcome these problems, we came up with the following idea. In the SCA

microscope experiment, the signal to noise ratio in the images increased indefinitely
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with the size of the tip: the ultimate signal to noise would be obtained with a very

large central bubble, producing an enormous variation in the charging signal. Since

we now understand the origin of the resonances, we could replace the movable tip

with simply a large metal pad on the surface of the sample. The idea is that this pad

would be patterned in the middle of the sample and we would contact it with a wire

bond. The experiment would be very similar to those performed by Zhitenev et al.

[114], except that we would not be measuring charging from the edge of the sample,

but instead from the compressible bulk, as we do in the scanning experiment.

Experimentally, the large size of the pads that are required so that we can wire

bond to them should not present a problem, as such resonances were observed in the

earlier experiments with pad capacitances as large as 1 pF (7 × 170µm area). The

large capacitance of the central region should also significantly help our ability to

measure the lower resistance of weaker incompressible strips, such as those at ν = 3.

Since there are no high voltage arcing issues, we will be able to study temperature

dependences, and the lack of sample-tip drift will allow unattended operation. Fi-

nally, the experiment will be compatible with our dilution refrigerator, allowing us

to work at much lower temperatures and much higher magnetic fields, opening up

the possibility of studying the resistance of incompressible strips at fractional filling

factors.

4.2 Experimental Setup

Because we are using large features, we decided to use a transparency mask that we

made using a photoplot process. This process is fast and very inexpensive ($40 for

a 8x10 inch sheet). The photoplot process provides a incremental feature resolution

as small as 1 micron, but is limited to a minimum feature size of 8 microns. For the

pattern, we chose a selection of circular discs of different sizes, as well as a selection of

rectangles of different sizes at different orientations. These are shown in figure 4-1(a).

The choice of rectangles was chosen in mind of the possibility of observing charging

features from anisotropic behavior of the 2DES, such as seen in the stripe phase of
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Figure 4-1: Pictures of the sample used for the magnetocapacitance experiment. (a)
Pictures of the pads under an optical microscope. We patterned discs with diameters
of 20 µm (0.3 pF), 50 µm (2.0 pF), and 100 µm (7.9 pF), as well as 10 × 100 µm
(1 pF) 20 × 200 µm (4 pF) and 50 × 200 µm (10 pF) rectangles. (b) A picture of
the sample on the DIP socket with the reference capacitor and the vertically oriented
transistor mount.

the quantum Hall liquid [127, 128]. The pads ranged in capacitance from 0.3 to 10

pF.

For the amplifier, we used a vertically oriented transistor mount on the dip socket

with 3 FHX35X transistors in parallel for amplification. The biasing was provided

by an uncleaved FHX35X transistor used as a variable resistor. A 10 pF reference

capacitor was included as well, although the background capacitances were small

enough that nulling of the capacitance bridge was not necessary. The sample mounted

on the DIP socket is shown in figure 4-1(b).

Compared to the scanning experiment, the “central island” in this experiment

is much more strongly coupled to ground through the capacitance to the pad. A

much smaller excitation was used to prevent the possibility of large voltage across the

incompressible strip. Because of the enormous signal to noise provided by the design,

this did not prove to be a problem. We measured with excitation voltages ranging

from 10 µV to 300 µV. No excitation dependence was observed in this range.

One of the most challenging problems we had was with the adhesion of the pads

to the surface of the sample. This has always been proved a problem with GaAs,
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Figure 4-2: Charging signal as the area under the pad is depleted at zero magnetic
field. As the sample is depleted, the capacitance to the 2DES drops. At the same
time, the resistivity also diverges, leading to a lagging phase signal. The depletion
curve is not completely smooth: it contains several steps that are often associated
with features in the lagging phase signal. Such features were seen in the depletion
curves of multiple pads.

and many of our pads pulled off during the wire bonding process. Fortunately, some

of the pads showed good enough adhesion to wire bond to without pulling off the

metalization.

4.3 Measuring the Charging Signal

The first measurement we performed was to look at the charging signal as we depleted

the region under the pad. Such a measurement taken at zero magnetic field is shown in

figure 4-2. As the sample depletes, the capacitance from the pad to the 2DES begins

to drop. At the same time, the sheet resistance of the 2DES also increases, producing

a lagging-phase component of the charging signal. Interestingly, the lagging phase

signal shows a multiple peak structure. Such a multiple peak structure has been

observed in all three pads we have measured.

The in-phase charging signal as a function of magnetic field and gate voltage is

shown in figure 4-3(a). A cartoon showing the meaning of different regions of the
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Figure 4-3: (a) A plot of the in-phase charging signal as a function of gate voltage
and magnetic field. (b) A cartoon illustrating the meaning of different regions in the
plot. The dashed lines intersect indicated the centers of the νbulk = 1 and νlocal = 1
features. They intersect at the gate voltage that nulls the contact potential between
the gate and the 2DES. In this sample, the density under the gate is slightly enhanced.
Remarkably, the incompressible ring formed around the area under the pad when the
local and bulk 2DES are at different filling factors does not present any significant
resistance to charging the area under the pad.
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bias-field plot is shown in figure 4-3(b). The vertical features in the plot correspond

to magnetic fields where there is a filled Landau level in the bulk of the sample. In

these regions, the conductivity of the bulk vanishes, and the entire 5x5 mm area of the

sample stops charging. Outside of these regions, the bulk of the sample is compressible

and its conductivity σxx is high, allowing charge to travel from the ohmic contacts to

the edge of the gate with little resistance.

In the regions where the bulk is compressible, we observe drops in the charging

signal that follow sloping lines corresponding to having a filled Landau level in the

local gated region under the pad. The voltage that nulls the contact potential between

the 2DES and the metal gate can easily be read off the plot from where the νbulk and

νlocal intersect, as shown in figure 4-3(b).

One of the remarkable features of the data is that we observe no evidence of a

large resistance from the IS strip that separates the gated region under the pad from

the bulk when they are at different filling factors. This was initially quite surprising.

However, there is a very significant difference between the IS we have created here and

that we created in the scanning experiment. Specifically, since the gate metalization

is very close to the 2DES, the density gradient created by the gate is much steeper

than that created by applying a voltage to the conical tip. This means that the IS

created by the gate is much narrower than that produced by the tip. Our observations

suggest that such narrow ISs do not show the large resistance we observed in wider

strips in the SCA experiments.

As discussed in section 3.9, the IS strip width, to a good approximation, depends

only on the magnetic field. Specifically, increasing the bias voltage on the gate at a

given field increases the density perturbation, but does not change the strip width

because the strip also moves further away from the gate. Thus to measure transport

across a wide incompressible strip, we need to measure at a magnetic field closer to

where there is a filled Landau level in the bulk. However, since our pad capacitance is

so large, the vanishing conductivity of the bulk limits how close we can get to integer

filling before we lose the charging signal.

In the experiment of Zhitenev et al., one of the sides of the gated region ran along
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the edge of a mesa etched in the sample. This allowed them to charge the gated

region from one of the compressible edge channels even when the bulk was incom-

pressible. With this advantage, they were able to probe much wider incompressible

strips that displayed a large resistance, and also to observe the effects of the reso-

nant enhancement of transport across the strip from the hotspots we imaged in the

scanning experiment.

4.4 Measuring Oscillations of the Density of States

The fact that the incompressible strip around the edge of our pad has a very low

resistance turns out to have some interesting consequences. In particular, it happens

that our experiment is particularly well suited to measuring the quantum density of

states contribution to the capacitance of the 2DES.

Capacitance was recognized very early on as a probe of the density of states in

some of the first experiments on the 2DES in silicon MOSFETs [129, 130]. At the

time, however, it was not correctly recognized that the charging signal as measured

in these AC experiments is also significantly affected by the diagonal conductivity

σxx of the layer. This fact was brought to light later by Goodall et al. [91]. Their

measurements in a silicon MOSFET showed that in these samples, the drop in the

measured charging signal that occurs when there is a filled Landau level could be

accounted for entirely by a model that included only variations of the conductivity

of the layer. The signals they observed were strongly frequency dependent: going

to extremely low frequencies (9 Hz), the drops that they observed in the in-phase

component of the charging signal showed no observable oscillations above the noise

limit of their experiment. So dramatic was this effect that it led them to wrongly

conclude that capacitance measurements are incapable of measuring the density of

states correction that was suggested by earlier work, and can only be used to probe

the conductivity σxx.

The situation was clarified in an experiment by Smith et al. [74]. They pointed

out that the quantum density of states correction can indeed be measured in ca-
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pacitance measurements provided that the measurement is made at sufficiently low

frequencies that conductivity effects can be ignored. In particular, it is important

not only to work at lower frequencies, but also to use higher mobility samples with

less electron scattering. In order to achieve this, they measured the capacitance of

a 2DES in a GaAs/AlGaAs heterostructure that had a much larger mobility than

the Si MOSFET devices. By working at very low frequencies (20 Hz) with much

higher quality samples, they observed oscillations of the DC capacitance signal at low

magnetic fields corresponding to ν > 10. At these fields, the signal showed no lagging

phase component, and they were able to directly extract the Landau level density of

states from these low field oscillations. At magnetic fields higher than 1.6T, the layer

became too resistive and conductivity effects started to dominate over the quantum

oscillations. Thus, the observation of quantum oscillations in the density of states

is possible using capacitance measurements as long as conductivity effects can be

minimized.

It turns out that our experiment is very well suited for the observation of these

quantum capacitance oscillations because our sample has exceptionally high mobility

and because the area of the pad we are probing is very small. The mobility of our

sample is at least 20 times higher than in the experiments of Smith et al. (7 × 106

cm2/Vs vs. 3 × 105 cm2/Vs), and the capacitance of the pads we are using are at

least 20 times smaller. The mobility of the sample likely plays a very important

role in our ability to measure these quantum oscillations. Higher mobility samples

such as ours display much narrower Hall plateaus, indicating a higher conductivity

σxx in quantizing magnetic fields, and show qualitatively different transport scaling

properties than lower mobility samples [42]. At the same time, the lower level of

disorder reduces inhomogeneous broadening of the the Landau level density of states

[48].

The combination of much higher sample mobility with smaller pad capacitances

has allowed us to measure the effects of the density of states contribution to the

capacitance in large quantizing magnetic fields. Figure 4-4(a) and (b) show the in-

phase and lagging-phase components of the charging signal taken at 1 kHz from 4
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Figure 4-4: In-phase (a) and lagging-phase (b) data taken at 1 kHz. Remarkably,
for νbulk < 1 (B > 4.2T), the lagging phase signal is very small in magnitude when
the bias voltage is swept so that the local area under the pad is at integer filling.
This small lagging phase signal implies that the large drop seen in the in-phase signal
contains a significant contribution from the density of states.
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Figure 4-5: (a) RC charging model. (b) In-phase and lagging-phase components of
the charging signal. Note that that lagging-phase signal reaches a peak magnitude
that is equal to half of the change in the in-phase signal.

to 6T. At fields higher than 4.2T, the bulk is compressible and the features in the

plot are associated with the charging of the local area under the pad. As discussed in

earlier sections, we observe a large drop in the in-phase charging signal when the local

density under the gate corresponds to a filled Landau level. What is quite remarkable,

however, is that this drop is not associated with a large lagging phase signal. At some

places, there is a peak in the lagging-phase signal, but what is notable is that the

magnitude of this lagging-phase peak is very small compared to the magnitude of the

the change in the in-phase component of the charging signal. This small magnitude of

the lagging-phase signal implies that the variation of the charging signal is not purely

of resistive origin, but also contains a significant contribution from the quantum

density of states correction to the capacitance.

The expected relationship between the in-phase and lagging-phase signals can be

demonstrated most easily in an RC model of the charging. In charging a capacitor

C through a resistor R, the in-phase and lagging phase components of the charge on

the capacitor plate are given by:

Re(Q∗(ω)) =
CV0

1 + (ωRC)2
(4.1)
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Figure 4-6: Bias sweeps taken at 4.5T. (a) Data taken at 1kHz. The magnitude of
the lagging-phase peak is much smaller than would be predicted if the change in the
in-phase signal was due entirely to resistive effects. At some voltage, the peak is
nearly absent. (b) and (c) show bias sweeps taken at 20 kHz and 168 kHz. In these
plots, resistive effects are more significant, although the lagging phase signal is still
too small for the in-phase signal drop to be of entirely resistive origin.

Im(Q∗(ω)) =
CV0 · ωRC

1 + (ωRC)2
(4.2)

What is particularly notable about these expressions is that if the charging signal is

varying only due to a change of the resistance R then the magnitude of the peak of

the lagging phase signal will always be half of the magnitude of the change in the

in-phase signal from the low frequency to the high frequency limit. This is shown in

figure 4-5. This RC charging model can also be extended to a continuous distributed

RC network such as we have under the metal pad in our experiment (see appendix

E). For a circular disc, the charging curve can be calculated analytically. The effect of

the distributed nature of the RC charging is a small distortion the RC curve, shifting

the peak in the dissipation to a slightly higher frequency and reducing its peak height

to 0.42 times the change in the in-phase signal. Qualitatively, however, the curve is

very similar to the simple RC charging case. 1

1This relationship between the magnitude of the in-phase and lagging-phase signals can also be
thought of in terms of a Kramers-Kronig relationship. If only the resistance is varying, then this is
equivalent to changing only the characteristic time τ = RC of the relaxation. In this case, causality
imposes a relationship between the real and imaginary components of the signal, which are not
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Figure 4-6(a) shows a bias-sweep line cut of the in-phase and lagging-phase data

from figure 4-4 taken at 6.0T. The in-phase signal show a large change of 7 pF, while

the peak in the lagging phase signal is at most 1 pF, and often absent altogether. The

small magnitude of the lagging phase signal shows that the value of the capacitance

C in expressions 4.1 and 4.2 must be varying. This change in the capacitance C

arises from the oscillation of the density of states of the 2DES due to the Landau

quantization. This can also be seen by comparing traces taken at different frequencies.

In contrast to figure 13 of [91], the magnitude of the in-phase charging signal change

that we observe does not decrease with decreasing frequency. This further supports

the idea that the variations we are observing do involve a significant contribution

from the density of states.

Although we can conclude that we are observing effects from the density of states,

the presence of small lagging phase signals makes it difficult to quantitatively extract

the density of states from our data. To do this unambiguously, the lagging-phase

signal should really be zero so that we can safely ignore resistive effects altogether.

This could be achieved experimentally by measuring at even lower frequencies and

by using pads with smaller areas.

4.5 Density inhomogeneity at the edge of the gate

The magnetocapacitance plots also display some features that are very strange, shown

in figure 4-7. In particular, on the low-field side of νbulk = 1, the charging signal seems

to be suppressed at low bias voltages but then recovers again at sufficiently positive

gate biases. During this recovery, the charging signal shows sharp spikes reminiscent

of the transport resonances observed in [114]. Also, at slightly lower magnetic fields

and at depleting gate bias voltages, it seems that the bias sweeps show a signature of

the νgate = 1 state that suddenly collapses at lower magnetic fields. What is strange,

however, is that the edges of this apparent νgate = 1 state do not quite line up with the

independent. Given one component of the signal, a Kramers-Kronig type transformation could be
used to obtain the other. These transformations, however, are difficult to implement numerically.
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Figure 4-7: In-phase (a) and lagging-phase (b) charging data taken near the low field
side of νbulk = 1. Near the edge of νbulk = 1, the charging signal is suppressed at low
densities, but then recovers at higher gate voltages. There is also a strong resistive
suppression of the signal at lower magnetic fields at biases that are close to νlocal = 1.
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Figure 4-8: After illumination with the LED, the bulk density doubled in our sample.
(a) At the edge of the gate, this density enhancement will continue for a distance
given by the penetration depth of the red light into the GaAs, about ∼ 0.5 µm. (b)
Applying a bias voltage to the gate to match the bulk density and the density far
under the gate, a density “hump” results.

extrapolation of the data to higher magnetic fields. What is also notable about both

of these features is that they are associated with large values of the lagging phase

signal, suggesting that they arise from a local resistance somewhere in the 2DES.

A suggestion for the origin of this local resistance comes from observations of

the charging plots after cryogenic illumination of the sample with a LED. Exposing

heterostructures like the ones we use to light from a red LED while they are cold

results in an annealing of the kinetically frozen charge distribution in the donor layer,

an effect known as persistent photoconductivity [99, 100]. After exposure to light,

both the density and the mobility of the 2DES increase2. In order to try to increase

the mobility of our sample, we tried illuminating it with a red LED. What had not

occurred to us at the time was that because the bandgap of GaAs is in the IR, the

penetration depth of the red light into the heterostructure is only ∼ 0.5 µm. This

means that after illumination, the area under our pad will not be exposed because the

light cannot travel far through the GaAs, nor can it penetrate the metal gate. After

illumination, with the voltage on the topgate set to null, we will have a significant

density mismatch between the area under the pad, which will still be at around

2The exact nature of the mobility increase seems to be unclear. In particular, the mobility of
a GaAs 2DES scales as ∼ n1.5 [131, 132, 133], suggesting that the increase in mobility could be a
secondary effect that results only from the increase in the electron density. It would be interesting to
modify the density of the 2DES with a backgate after illumination to return it to its original density
and see if the mobility at the same electron concentration had changed, which would indicate an
increase in donor correlations after illumination.
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Figure 4-9: In-phase and lagging-phase charging signal after illumination with the
LED. After illumination, νbulk = 1 occurs at 9T. The data shows a similar resistive
suppression of the charging signal at low bias voltage on the low-field side of integer
filling factors in the bulk as shown in figure 4-7.

1.2× 1011 cm−2, and the bulk, which will have increased to about 2.2× 1011 cm−2. In

fact, it is even worse than this: the LED will actually expose a 0.5 µm circumferential

ring that is under that gate, as illustrated in figure 4-8. Applying a bias voltage to

the gate to try to match the density under the pad to that in the bulk will result in a

density “hump” that runs around the edge of the gate. At certain biases and magnetic

fields, this region could contain a wide incompressible strip that could resistively cut

off charging to the entire region under the pad.

Charging signals taken after LED illumination are shown in figures 4-9. The

data shows a very similar resistive suppression of charging at low bias voltages. This

suggests that such a suppression could arise from a resistive ring formed from density

inhomogeneity at the edge of the gate. The sharp spikes seen in the charging signal

likely result from resonant tunneling through this resistive ring. In some sense, we

have managed to accomplish our original goal of observing transport resonances.

However, since we do not have control over the density inhomogeneity created by the

illumination, the interpretation is not altogether clear.
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Figure 4-10: Two terminal magnetoresistance of the sample taken on the first
cooldown before illumination. The ν = 1 plateau occurs at the same position as
the signal from the bulk charging in the magnetocapacitance trace. Weak plateaus
from some fractional states are also seen. The measurement was taken at a current
bias of 100 nA. (The lock-in amplifier went off scale during the measurement at the
positions of the missing data points.)

The data from after LED illumination suggest that similar features shown in figure

4-7 from before illumination could also arise from density inhomogeneity at the edges

of the gate. In this case, the inhomogeneity could arise from diffusion of charge into

the surface states around the edge of the metal pad. Such instability in surface states

has been imaged on several occasions by our group using the SCA microscope, as well

as by other groups using different scanning probe techniques [134, 90].

4.6 Sample Density

Another problem we had with this sample was that the density was significantly

different from what it was supposed to be, and varied significantly from cooldown

to cooldown. This is very different from a sample made for the SCA microscope

experiment from the same wafer, which showed the same density to within a couple

of percent on three different cooldowns. In order to make sure that we were not

misinterpreting the Landau levels seen in the charging signal, we also performed two
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terminal magnetoresistance measurements on the sample, shown in figure 4-10 . These

clearly show the ν = 1 Hall plateau at 3.8T, and also shows weak plateaus at a few

fractional filling factors. Interestingly, we see no sign of any fractional states in the

charging signal plots. What is also strange is that below 3T, we observe no evidence

in the capacitance measurements of spin split Landau levels in the local area under

the pad.

The fact that the density was different from expected suggests that the mobility

of the sample on these cooldowns could also be different than expected from measure-

ments on samples from this wafer by our collaborators at Bell Labs. Unfortunately,

one of the corners of the sample chipped off during the final stages of processing, pre-

venting us from performing the four terminal measurements necessary to measure the

mobility directly. We can qualitatively gauge the mobility by examining the strength

of the Shubnikov-de-Hass oscillations of the charging signal at low magnetic fields. In

figure 4-3, we do not see nearly as many low field oscillations as observed in a sample

taken from the same wafer used in the SCA experiment (see figure 2-18). Applying

the LED restores the density to the same value observed by our collaborators after

illumination, and we observe much strong low field oscillations in the bulk charging

(see figure 4-9). However, as discussed in the previous section, such illumination also

leads to undesirable density inhomogeneity at the edge of the gate.

4.7 Conclusions

We started out with an experiment designed for the very specific goal of system-

atically characterizing the transport resonances we observed in the scanning probe

experiment using instead a fixed gate patterned on the sample surface. It turned out,

however, that this geometry produces very narrow incompressible strips with very

low resistances, and no clear signatures of these resonances were observed.

On the other hand, by probing the capacitance of a relatively small pad on top of

a very high mobility 2DES, we unexpectedly managed to observe a strong density of

states modulation of the capacitance of the 2DES in strong quantizing magnetic fields
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Figure 4-11: A capacitive Corbino ring geometry designed to study transport through
a narrow incompressible region with a tuneable density gradient. Two gates are
patterned on the surface that are separated by a narrow ring of ungated 2DES, shown
in (a). The 2DES is grounded through a large resistor, allowing the voltages applied
to the gates to modify the local electron density. By adjusting the DC voltages on the
two gate, the regions under each gate can be chosen to be metallic and fully charging.
Measuring the capacitance between the two gates with the magnetic field such that
integer filling is given by the dashed line directly probes transport through the narrow
incompressible region. Because the contact is made only capacitively, we have much
more control over the density gradient in the incompressible region.

in a lateral charging experiment. Such an observation had at times been claimed to

be impossible by some [91] and was observed by others [74] only at low magnetic

fields and very low frequencies. Combining our unique geometry with a smaller pad

and a lower measurement frequency should easily allow quantitative extraction of the

density of states of the 2DES in large quantizing magnetic fields.

Our experiment has also led to new ideas about how to capacitively probe the

resistance of the quantum Hall system in unique ways. One particularly promising

idea is that of a capacitive “Corbino ring”, shown in figure 4-11. Here, we would

measure the capacitance between two metal pads on the surface of the 2DES. The

AC voltage driving charge in the 2D layer is contacted only capacitively. An ohmic

contact to the 2DES is connected to a DC voltage through a large bias resistor or a bias

transistor, which allows us to tune the density under each gate independently. Such

a geometry would allow complete control over the density gradients in the resistive

region we are probing.

From start to finish, the experiment took only four weeks to complete. Considering

the interesting results we were able to obtain in such a short time, repeating this

146



experiment with a more stable sample would be a relatively easy and fruitful endeavor.
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Chapter 5

Simulating the Interaction of a

Metallic Scanning Probe with the

Quantum Hall Liquid

In this chapter, we discuss simulations we have developed to model the electric fields

and charge distributions that result from the interaction of our metallic scanning

probe with the 2DES. This work was done is collaboration with Nemanja Spasojevic

through the MIT Undergraduate Research Opportunities Program. Many details of

the simulations are available in his undergraduate thesis [135].

5.1 Motivation

The conical geometry of the tip and the presence of a dielectric layer covering the

2DES make it very difficult to even estimate the interaction of the probe with the

2DES. In particular, our experiment can directly measure the capacitance from the tip

to the 2DES, yet by hand, we cannot even estimate what we expect this capacitance

to be.

The effect that voltages on our probe have on the 2DES is also very important.

This can become quite complicated in the quantum Hall regime, where the proper-

ties of the 2DES are very sensitive to the local electron density, and the 2DES can
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become very spatially inhomogeneous. Our experiments often include applying DC

bias voltages to the tip in the quantum Hall regime, so understanding how this affects

the 2DES is very important in interpreting our results.

These difficulties led us to develop a complete electrostatic simulation of the tip

and the 2DES. We initially considered only cylindrically symmetric systems, which

significantly reduces the amount of time and computer memory needed. We later

extended these to 3 dimensions, allowing us to see effects such as disorder. The 2D

simulations have proved to be invaluable in terms of understanding our experiment,

and the 3D simulations provide remarkable insight into the effect of disorder on the

incompressible ring and the transport resonances we observed discussed in chapter 3.

5.2 Numerical Methods

In order to calculate the charge densities and electric fields between the tip and the

2DES, we need to solve the Poisson equation:

∇2φ(~x) = −ρ(~x)/ε (5.1)

Here, ρ(~x) is an externally imposed charge density and φ(~x) is the electrostatic poten-

tial. There are many ways to implement this numerically. The first step is to divide

the region of space we are considering into a discrete grid. This reduces the contin-

uous differential equation above to a set of finite-difference equations describing the

potential φi at the grid points in the simulation. From there, the methods of solving

the problem can be divided into two general categories: “direct” and “iterative”. In

the direct methods, the problem is formulated as a matrix equation:




A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

...
...

AN1 AN2 . . . ANN







φ1

φ2

...

φN




=




ρ1

ρ2

...

ρN




(5.2)
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Figure 5-1: A plot of the average squared residual error as a function of the number
of relaxations for simple relaxation. χ2 shows an initial rapid drop as the values of
the potential diffuse in from the boundaries. The long tail is associated with the slow
damping of long wavelength error in φ.

Here Aij is an N ×N matrix that describes the coupling between each of the points

on our grid, where N = L1L2L3 for 3D grid of dimensions L1×L2×L3. At first, this

would seem to involve a very large memory requirement O(N2). However, because

each φi is only coupled to its nearest neighbors, the matrix Aij is quite sparse: for the

1D case it is band diagonal. In 2D and 3D, it requires some off-diagonal elements,

but can still be stored quite efficiently using sparse matrix routines. The memory

requirement can be reduced this way to O(N log N) (see table 5.1). Solving for the

potential involves inverting the matrix Aij, which can be done relatively easily using

common math libraries. While there is a larger space requirement needed to store

the large Aij matrix compared to the iterative methods we will discuss next, the

direct methods can be relatively fast (O(N3/2)) and yield and exact solution in one

interaction for linear problems.

Iterative methods involve a technique based on relaxation of the potential [136,

137, 138]. Here, we start with an initial guess for the potential φ at all points in space

and store it in an N element array. We then iterate through the array, replacing φi

at each point with a new value that satisfies equation 5.1 based on the value of
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the potential of its neighbors. Over time, the potential “propagates” inwards from

the boundary conditions. After sufficient iteration, the potential converges to the

correct solution. The process is monitored by examining the residual error after each

iteration. At the end of an iteration, for each point we calculate a residual error:

Fi = −∇2φi − ρi/ε (5.3)

We then define a average residual square error χ2 as:

χ2 =
1

N

∑

i

(Fi)
2 (5.4)

Fi has the units of charge, and χ2 can be though of as the average squared residual

charge error per pixel. After sufficient iteration, χ2 will stop decreasing, indicating

that we have reached the limit where the remaining residual charge is due to trun-

cation error in the potential. This is illustrated in figure 5-1. The ultimate value

of χ2 will depend on the physical size of the pixels, the dielectric constant, and the

numerical precision used in the code.

Iterative methods have a very good memory requirement, using only O(N) space,

and are more physically intuitive than the direct methods. The disadvantage is that

simple relaxation is very slow: each iteration takes an amount of time O(N), and it

can be shown [138] that the number of iterations required to converge is O(N), giving

a total running time O(N2). Fortunately, there is a simple procedure called successive

over-relaxation (SOR) that can drastically speed up this process. In relaxation, at

each iteration n we calculate a ∆φn
i for each pixel i that will make the new potential

φn+1 solve the Poisson equation based on the values of its neighbors. In SOR, we

multiply ∆φn
i by a numerical factor ω, making the update to the potential:

φn+1
i = φn

i + ω∆φn
i (5.5)

SOR for a linear problem is guaranteed to converge for 0 < ω < 21. For a given

1Taking ω < 1 would be called “underrelaxation”.
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relaxation problem, there is an optimal ω that will cause the problem to converge in

O(N1/2) iterations [138].

What is interesting is that it is not the “diffusion” of the boundary values that

makes ordinary relaxation slow. This “diffusion” occurs quite quickly, during the

steep section of the χ2 curve shown in figure 5-1. Instead, what makes relaxation

slow is the damping of long wavelength fluctuations in φ2. This is slow because

relaxation involves only a short lengthscale “smoothing” since it connects only nearest

neighbors. It is this slow damping that produces the long tail in χ2. SOR helps

by creating “waves” in the potential that propagate long wavelength updates more

quickly through the simulation than simple relaxation. The value of the optimal ω

can be estimated from the simulation size [139]:

ωopt ≈ 2

1 + π/ min(Nx, Ny, Nz)
(5.6)

The reason this number is connected with the physics size of the simulation is that

for this is that at high ω, SOR gets slower due to the establishment of standing waves

in the residual error from reflections from the boundaries. These standing waves can

often be seen in plots of the residual error (see figure 2-4 in [135]). From a practical

point of view, it is generally better to overestimate ω for the linear Poisson equation,

as the convergence rate falls off more quickly for underestimation [138].

Table 5.1, summarizes the memory and time requirements of different methods

of solving the Poisson equation. For our simulations, we chose SOR, as it is easy to

implement, provides good time and memory performance, and has a nice physical

interpretation. It also allows us to deal with the numerical instabilities introduced by

the non-linear Poisson equation discussed in the next section in a very natural way.

2The damping of these long-wavelength fluctuations is also the basis of the more sophisticated
multigrid method. Using the multigrid method, relaxation will converge in O(0) iterations, achieving
the O(N) theoretical lower time bound for the solution of the Poisson equation.
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Method Serial Time Space Direct or Iterative

Dense Cholesky N3 N2 D
Explicit inverse N2 N2 D
Band Choelsky N2 N3/2 D
Jacobi’s N2 N I
Gauss-Seidel N2 N I
Sparse Cholesky N3/2 N log N D

Conjugate gradients N3/2 N I
Successive overrelaxation N3/2 N I
SOR with Chebyshev accel. N5/4 N I
Fast Fourier transform N log N N D
Block cyclic reduction N log N N D
Multigrid N N I
Lower bound N N

Table 5.1: Comparison of the memory and time complexities of solving Poisson’s
equation on an L× L grid (N = L2). Adapted from [138] page 277.

5.3 The Non-Linear Poisson Equation

In the previous section, we discussed solutions of a poisson equation of the form:

∇2φ(~x) = −ρ(~x)/ε

Each point in space was either an insulator that carried a specific fixed charge ρ(x)

(which was zero for free space), or was a metal, which corresponded to a boundary

condition of a fixed potential V . Unfortunately, the 2DES that we will want to model

corresponds to neither of these situations. The 2DES is similar to a metal in that

a 2DES connected to a battery will be held at a fixed electrochemical potential V ,

and will screen electric fields by adjusting its local charge density. The difference is

that the 2DES behaves like a semiconductor and cannot screen these electric fields

perfectly because it has a finite density of states. This modifies the Poisson equation

in the following way: the local charge density in the semiconductor becomes a function

of the local potential:

∇2φ = −ρ(φ)/ε (5.7)
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Figure 5-2: A semiconductor held at electrochemical potential V where the electron
density is varying with position. The chemical potential µ is larger in regions of higher
density. In order to maintain a constant electrochemical potential V = φ + eµ, the
electrostatic potential φ must drop.

The function ρ(φ) describes show the charge density in the semiconductor will vary

as a function of the local self-consistent potential. To see what this means physically,

consider a semiconductor in equilibrium at an electrochemical potential V in which

the local density is varying, as shown in figure 5-2. Due to the change in the electron

concentration ∆n, the local chemical potential µ changes by an amount ∆µ. To

maintain electrochemical equilibrium, there must also be a change in the electrostatic

potential φ by an amount ∆φ = −|e|∆µ. The function ρ(φ) in 5.7 describes exactly

the inverse of this: it tells us the change in the electron concentration ∆n that results

from a change in the equilibrium electrostatic potential ∆φ in the semiconductor.

The non-linear Poisson equation 5.7 using a ρ(φ) derived from the density of states

is exactly equivalent to the Thomas-Fermi approximation [131].

The function ρ(φ) for different types of materials is shown in figure 5-3. For an

insulator, ρ(φ) is constant, independent of φ. For a metal, ρ(φ) is a vertical line: a

metal will always adjust its local charge density to keep its potential fixed. The 2DES

is a semiconductor, and lies somewhere in between. It shows a slope in the ρ vs. φ

plane that is given by the thermodynamic density of states dn/dµ and that intersects

zero at the value of of the externally imposed electrochemical potential V . The 2DES

also has a finite carrier concentration: for a sufficiently negative φ, the local charge

density will saturate at +|e|n0.

It is very easy to extend our simulations to model the 2DES in the quantum Hall

regime. In a magnetic field, the constant density of states of the 2DES breaks up
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Figure 5-3: ρ(φ) for a metal (green dashed line), an insulator (blue dashed line) and a
semiconductor (red line). Due to the finite density of states, the curve for a semicon-
ductor has a finite slope. A semiconductor with a fixed density of negative carriers
n0 will have a maximum possible space charge density of ρ0 = +|e|n0, corresponding
to full depletion.

E
O
�E
&

&

/--

ä�D
�

�

	B
 	C


Figure 5-4: (a) In a magnetic field, the zero field density of states (dashed) breaks
into δ functions separated by h̄ωc. Each Landau level holes eB/m electrons, resulting
in a staircase ρ(φ) shown in (b) that follows the slope of given by the zero field density
of states (dashed).
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into a set of δ-functions, as shown in figure 5-4(a). These δ-functions are separated in

energy by h̄ωc, where ωc = eB/m is the classical cyclotron frequency. Each Landau

level holds NLL = eB/h electrons. The ρ(φ) curve becomes a staircase that follows

the slope of the density of states of the zero field case, as shown in figure 5-4(b). Using

such a function ρ(φ), we can perform calculations of the self-consistent potential in

large magnetic fields similar to those in [50, 51, 140] for our exact device geometry.

The width of each step is given by h̄ωc and the height of the steps is NLL. Because

ideal delta-functions lead to numerical instabilities in our relaxation algorithm, we

model the ideal δ functions as narrow bars who’s integrate area is NLL. The effect of

this is to add a finite slope to the vertical “drops” in the staircase.

The function ρ(φ) is not necessarily linear, and so in introducing it we now have

to solve a non-linear differential equation. In the iteration scheme, we expand ρ(φ)

to first order and incorporated the linear term into our update equation [135]. This

is equivalent to Newton’s method. However, the relaxation of the non-linear Poisson

equation can be unstable, and convergence is not guaranteed as it is in the linear case.

We have found, however, that most of the non-linear problems we have solved can be

“coaxed” into convergence by under-relaxing the pixels of the simulation that have a

non-linear ρ(φ). This is accomplished in the code by having a separate SOR parameter

ωNL for the non-linear pixels that has a value ωNL < 1. During the simulation, if

a diverging χ2 is detected, the code will automatically reduce ωNL until χ2 starts to

drop again. This also has the advantage that we can still use a large SOR parameter

for the remaining linear pixels.

5.4 Boundary Conditions and Non-Uniform Grids

One of the difficulties in simulating our devices is the decision of what to do at the

boundaries of the simulated region. At the edge of the simulation, we have the choice

of applied three possible boundary conditions for our problem to be well defined:

a “metallic” fixed potential boundary (φB = C, Dirichlet condition), a vanishing

normal derivative boundary (~∇φ · n̂ = 0, Neumann condition), or a periodic boundary
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condition (φ(x) = φ(x− L)). In our experiment, an appropriate boundary condition

in many directions is that φ(∞) = 0. Unfortunately, this is difficult to implement

numerically with a finite-sized simulation3.

One solution that allows us to move the boundaries very far away without increas-

ing the number of grid points is to use non-uniform griding. This can be done in a

simple way without resorting to the complications of triangular meshing by using a

rectangular grid where the spacing in a given direction depends only on the coordi-

nate in that direction: ∆x = f1(x), ∆y = f2(y), etc. We have implemented this for

our 2D simulations in cylindrical coordinates [135]. In the end, the simulation results

were not that sensitive to the boundary conditions anyway, but the non-linear griding

does come in handy.

In our work, we have most frequently employed both fixed potential and vanishing

normal-derivative boundary conditions at the edges of the simulation. Fixed poten-

tial boundary conditions have a very clear physical meaning in electrostatics: they

simply correspond to a nearby (rather than infinitely far away) ground plane. Normal

boundary conditions are natural at the r = 0 side of our simulations in cylindrical

symmetry. They also have a simple physical interpretation at other edges: they can

be though of as a “mirror” boundary, where we have arranged identical charge dis-

tributions on the other side of the plane that cause the electric fields normal to it

to cancel. They are similar to periodic boundary conditions in this way. We have

tended to use them in place of periodic boundary conditions at the lateral edges of

our 3D simulations as we have found that periodic boundary conditions seem to cause

instability with the SOR.

3There is an interested method for applying such an “open” boundary condition for a 3D Cartesian
geometry, where a close form for the Green’s function is available [139].
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Figure 5-5: (a) An SEM image of an etched tip. The position of the edge of the tip
metal was extracted from the image. (b) The position of the Z coordinate of the edge
of the tip as a function of the X coordinate is shown in green. The blue line shows
the fit to the function 5.8 with a pitch a of 1.6 and a hyperbolic radius R of 5 µm.
There is a slight rotation of the tip in the image.

5.5 Results from 2D Simulations Using Cylindrical

Symmetry

In the first set of simulations we present, we ignore the effects of disorder and take

advantage of the cylindrical symmetry of the tip. This reduces the simulation of the

3D electrostatics to a 2D simulation with cylindrical coordinates that includes only

the vertical and radial directions. This allows us to accurately model the exact shape

of a large portion of the tip and allows use to use larger simulation sizes to ensure

that boundary effects can be neglected.

5.5.1 Tip Approach Curves

The first calculations we performed were to simulate the capacitance “tip approach”

curves discussed in section 2.7.1. The first step was to get an accurate fit to the

shape of the tip produced by our tip etching procedure. Figure 5-5(a) shows an SEM

image of a tip used on one of our cooldowns. The r-z data describing the edge of

the metal was extracted from the images using g3data [141], and is plotted in figure

5-5(b). A convenient parametrization of the shape of the tip turned out to be that of
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Figure 5-6: Geometry of the simulation. The 2DES is situated 100 nm below a GaAs
dielectric layer.

a hyperboloid:

z = a
√

R2 + r2 (5.8)

Here, R is the hyperbolic radius and a describes the asymptotic slope of the hyper-

boloid, or the “pitch” of the tip. The tip in the SEM in 5-5(a) had a pitch of 1.6 and

a hyperbolic radius of 5 µm. The fit is shown in 5-5(b).

For the purposes of the tip approach curves, we modeled the 2DES as a metal

layer that is 100 nm below the surface. We used a dielectric constant of 13 for the

GaAs layer. Non-linear griding was employed to create a large 9.8×7.5 µm simulation

area. The geometry of the simulation is shown in figure 5-6. The capacitance was

calculated for tip to surface separations ranging from 10 nm to 1 µm. The calculated

curve is shown in figure 5-7. Also shown is the measured tip approach curve from the

first approach on the cooldown where a tip with the same form as shown in in figure

5-5 was used. The agreement between the measured and simulated data is remarkably

good considering that both of the curves contain no adjustable parameters. For the

experimental data, the vertical capacitance scale was obtained from an independent

calibration of the source-drain capacitance of the bias transistor, and the zero for the

sample-tip separation was taken from the kink in the capacitance curve where the tip
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Figure 5-7: A comparison of the experimental and simulated tip approach curves.
In this comparison, there are no adjustable parameters. The agreement between the
simulated and experimental curves is remarkable.

touched the sample surface. This not only demonstrates the ability of our simulations

to accurately model the tip, but also shows the accuracy of the calibration of the

capacitance bridge in our experiment.

To demonstrate the correlation between the shape of the tip and the form of the

tip approach curve, we have calculated capacitance curves for tips of different shapes.

Figure 5-8 shows the curves for the tip shapes shown in the inset. Increasing the tip

pitch to 10 with a 5 µm hyperbolic radius, the “upturn” in the capacitance occurs

over a shorter distance and is much smaller in magnitude. For an ideally sharp tip

(10 nm, corresponding to the pixel size in our simulation), there is no “upturn” at all,

and the curve shows only a very small slope from the change in the global capacitance

to the 2D layer.

5.5.2 Capacitance Change Seen in Gate Images

Because we are performing a simulation with cylindrical symmetry, we cannot exactly

simulate the shape of the line cut across the gate from the capacitance images that
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Figure 5-8: Calculated approach curves for different shaped tip, shown at the top
right. The curve from figure 5-7 with a pitch of 1.6 and a radius of 5 µm is shown in
green. Increasing the tip pitch to 10 with the same radius, shown in blue, decreases
the magnitude of the upturn. The curve for a perfectly sharp tip (10 nm) is shown
in red. This curve shows no “upturn” at all.

was discussed in section 2.7.2. We can, however, calculate the magnitude of the

capacitance change. We can also get a feel for how quickly the signal will fall off

as we move away from the gate by chopping a circular “hole” in the gate under the

tip. Modeling how the capacitance of the tip to the 2DES and the gate changes as

a function of the size of this hole will give us a rough idea of the distance scale to

expect from the line cuts of the images.

The results of such a calculation using the same three tip shapes shown in figure

5-8 is shown in figure 5-9. For these simulations, the end of the tip was positioned 30

nm above the surface, and the gate was taken to be 10 nm tall. The largest tip shows

a capacitance drop of about 60 aF, in agreement with data from the cooldown with

this tip. The tip with the steeper pitch shows a smaller capacitance change of about

10 aF with a faster fall-off. The sharpest tip shows virtually no falloff whatsoever,

with the signal changing only by 0.2 aF. This demonstrates the remarkably small

local contribution seen in sharp tips, and questions their usefulness in capacitance

imaging4.

4The idea that smaller tips do not increase the spatial resolution due to degredation of the signal
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Figure 5-9: A comparison of the gate capacitance curve for the same tips shown in
5-8. The data shows the capacitance to the tip as a function of the size of a circular
hole cut in the gate under the tip, as an approximation of how the capacitance falls
off with the lateral distance from the gate in the experiment. The r = 0 value was
extended to negative distances for illustrative purposes. Notably, the curve for the
sharp tip is remarkably flat, showing a total capacitance change of only 0.2 aF.
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Figure 5-10: (a) Density profile at a magnetic field corresponding to νbulk = 0.8 with
increasing bias voltage applied to the tip showing the formation of the IR. (b) The
dimensions of the IR and the occupation of the central bubble as a function of tip
bias voltage. The calculations were performed for a tip with r = 5 µm and a pitch of
1.6.
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Figure 5-11: The calculated IR width (a) and inner radius (b) as a function of the
tip bias voltage for different magnetic fields. Once formed, the IR width is relatively
insensitive to the bias voltage, and is determined only by the magnetic field.

5.5.3 Simulating the Incompressible Ring

By using a ρ(φ) function appropriate for the 2DES as large magnetic fields, we can

use our simulations to predict the size and width of the IR in the absence of disorder.

Figure 5-10(a) shows the density profile induced by a DC voltage on the tip at a

magnetic field corresponding to a filling factor ν = 0.8. Below a threshold voltage,

the density perturbation is not large enough to reach ν = 1. As the bias voltage is

increased, we reach a point where the local density under the tip reaches ν = 1, and

the top of the density mound is “chopped off”. Increasing the bias voltage further,

a ν > 1 bubble forms. The IR moves to larger radii as this ν > 1 region grows with

increasing bias voltage. In figure 5-10(b), we plot the position of the inner and outer

edge of the IR as well as the its width as a function of the tip bias voltage. Note

that after formation, the IR width does not significantly change as the bias voltage

is swept. Also shown is the number of ν > 1 electrons in the bubble. Note that the

occupation of the bubble is quite large for this tip. The radius of the IR is in good

agreement with the arcs we observe in the experiment.

We have also performed these calculations at several different filling factors. The

outer radius and IR width for these filling factors as a function of bias voltage are

was also noted by Lányi et. al [142], although their analysis was based on a different experimental
setup.
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shown in figure 5-11. To a good approximation, the IR width is independent of bias

voltage and is set only by the magnetic field, as discussed in section 3.9. Moving

to filling factors closer to ν = 1 results in a wider IR, and the IR at the same bias

voltage has a larger radius. These observations are also in agreement with what is

observed in the experiment.

5.5.4 Calculating the Lever Arm

As discussed in section 2.4, the AC excitation in our experiment will induce an AC

voltage across the IR when the IR has a sufficiently high resistance that the central

bubble does not charge. The magnitude of the AC voltage appearing across the IR

is determined by a capacitive divider formed by the ratio of the bubble’s capacitance

to its grounded surroundings to the value of its self-capacitance:

∆V

Vac

=
Ctip + Cgnd

Ctip + Cgnd + Cbulk

(5.9)

To calculate these capacitance matrix elements, we will represent each portion of the

system as a separate metallic region. The island will be set to a potential of 1V and

the bulk 2DES, the tip, and the metal boundary will be grounded. The capacitance

of the bubble to each region is found by summing up the charge induced on each

region.

Unfortunately, there are many variables that will influence the value of these

capacitances. In particular, we will consider the variation of the lever arm with the

pitch of the tip, the height of the tip above the surface, the size of the inner bubble,

and the width of the IR. For these simulations, we started with a “base” configuration

consisting of a tip height of 60 nm above the surface, a tip pitch of 1.6, a bubble size

of 1 µm, and a strip width of 100 nm. We then varied each one of these parameters

on their own and calculated the lever arms. The results for the island capacitances

and the lever arms are shown in figure 5-12(a)-(d). In each, the data points for the

base configuration are circled. The typical island self capacitance is ∼ 800 aF and the

lever arm ranges from about 4 to 12. While some of these parameters we can control,
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Figure 5-12: Island capacitances and lever arms for varying island radius (a), strip
width (b), distance to surface (c), and tip pitch (d). For each, the “base configuration”
was a island radius of 500 nm, a strip width of 100 nm, a 60 nm distance from the
surface to the tip, and a tip pitch of 1.6. The values for the base configuration in
each plot are circled.
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Figure 5-13: (a) Density profile as a function of topgate voltage at ν = 1.2. The
dashed line indicates the position of the gate on the surface of the sample. (b) Calcu-
lated strip width at a function bias voltage for different magnetic fields corresponding
to the indicated bulk filling factor. After the initial formation, the strip width is
independent of the the bias voltage.

such as the tip height and pitch and the bubble size, the value of the strip width is

difficult to predict accurately, as it will depend sensitively on the microscopic energy

gap. It is also influenced by disorder gradients, which will tend to produce a narrower

strip than predicted in the absence of disorder.

5.5.5 Incompressible Strip Widths in the Magnetocapaci-

tance Experiment

We can also use our simulations to predict the density profile and IS widths in the

experiment discussed in chapter 4 concerning the magnetocapacitance of fixed pads.

Since the simulation does not need to include a large tip, these simulations have fewer

pixels and run very fast (∼ 11 seconds each on a 1.7 GHz Pentium M).

The density profiles for a magnetic field corresponding to νbulk = 1.1 for different

gate voltages are shown in figure 5-13(a). There are two interesting features to note:

first, about 1/3 of the slope in the density gradient is underneath the gate. Second,

as we saw with the incompressible strip created by the tip, once the strip has formed,

the width of the strip remains nearly constant as we sweep the gate voltage, and is

set only by the magnetic field. This is shown clearly in figure 5-13(b), which plots
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Figure 5-14: (a) Green lines show the density profile for a voltage of 1V applied to
the tip at different distances d from the surface. The blue dashed line shows the fit to
equation 5.10 for a 10 nm distance from the surface. (b) Parameters obtained from
fitting the density profile at different sample-tip separations.

the strip width as a function of gate voltage for several magnetic fields. Also notable

is that the incompressible strips are much narrow than those formed by tip due to

the increased density gradients due to the proximity of the gate metal to the 2DES.

5.5.6 Jellium Approximation for the Tip Perturbation

In the previous sections we used a full electrostatic model of the tip to predict the

size and with of the IR created in our experiment. We will later be interested in

extending these results to a 3D simulation that will include disorder from remote

ionized donors. In 3D, it would be impractical to include the full geometry of the tip

in the simulation, as the size of the arrays we would require would be too large and

the simulations would be far too slow.

Fortunately, once we have measured the density profile created by the tip at zero

magnetic field, we do not need to include the full metal tip in the simulation to predict

the formation of the incompressible ring, as the properties of the strip are controlled

only by the local density gradients. By creating a similar situation that imposes

the same zero field density perturbation, we can calculate the IS in a magnetic field

without needing to include the tip.

To do this, we first characterize the zero field density profile induced by the tip
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Figure 5-15: Comparing the electron density profile at ν = 0.8 calculated using the
full tip (solid green line) to the calculation using the “jellium” approximation to
reproduce the density profile from the tip (blue dashed line).

as a function of its height above the surface. Figure 1 shows the density profile for a

tip voltage of 1V for various distances above the surface with the tip shown in figure

5-14(a). We fit this profile to an empirical function:

n(r) =
A

1 + (r/r0)b
(5.10)

Since the capacitance is linear in voltage at zero field, the coefficient A tells us the

magnitude of the peak density perturbation per volt applied to the tip. Parameter r0

describes the half width of the perturbation, and b describes the power law behavior

at large r. Figure 5-14(b) shows the fitted value of these parameters as a function of

the height of the tip above the surface.

In order to impose this density profile on the 2DES, we include a continuous

“jellium” layer in the simulation that has a radial dependence given by 5.10 that is

positioned one pixel below the 2DES layer. This induces image charges in the 2DES

that exactly mimic those created by the charged tip. In figure 5-15, we show the profile

of the ν = 1 IR calculated using this jellium approximation along with the same ν = 1

IR calculated using the tip. The two results show excellent agreement, justifying the
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use of this approximation to replace the tip in our 3D simulations. Effectively, using

the “jellium” approximation to the tip neglects changes in the charge distribution on

the tip that arise due to the dipole formed at the position of the incompressible strip.

Since this tip metal is quite far away from this dipole and since the dipole electric

fields drop off rapidly with distance, it is reasonable that the jellium approximation

should be quite accurate.

5.6 3D simulations

After we began to understand the meaning of our experimental imaging results pre-

sented in chapter 3, it became clear that disorder plays a very significant role in the

properties of the 2DES. In order to include the effects of disorder in our simulation,

we have extended our earlier code to 3 dimensions to allow the modeling of the dis-

ordered quantum Hall liquid. We present and discuss these results in the following

sections.

5.6.1 Simulating the IR in the Presence of Disorder

In order to simulate the effects of disorder on the IR, we include randomly ionized

donors in our simulation. These random donors are displaced vertically from the

2DES layer by a setback distance. The donors are all located in the same 2D plane,

describing the δ-doping method used in our samples.

Figure 5-16(a) and (d) show the density profile that results in the 2DES layer

from 1.5 × 1011 randomly ionized donors at a 20 nm and 50 nm setback distance

respectively. Note that the self-consistent disorder potential has the exact same form:

in the Thomas-Fermi approximation, the density and the potential are linearly related

through the 2D density of states:

n(~x) ∝ dn

dµ
U(~x) (5.11)

Thus at zero field, examining the disorder by looking at the density or the potential
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Figure 5-16: Effect of the setback distance on the disorder potential. (a) and (d) show
the disorder density profile from the same set of donors at a 20 and 50 nm setback
distance respectively. (b) and (e) show the amplitude of the Fourier transform of
the density, and (c) and (f) show the autocorrelation function for the density profile.
The self consistent disorder potential has the same form as the density profile, as
they are linearly related through the density of states at zero magnetic field in the
Thomas-Fermi approximation.
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Figure 5-17: (a) A line cut of the disorder density profile for 20 nm (green) and 50 nm
(blue) setback distances. (b) Histogram of the simulated density profile for the two
setback distances. Note that both density profiles have a high-density tail, caused by
the fact that the donors in the simulation are all positively charged. (c) A comparison
of line cuts of the autocorrelation function.
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Figure 5-18: Shape of the IR calculated using 1.5×1011 cm−2 randomly ionized donors
with a 50 nm setback. Simulation is for a magnetic field corresponding to νbulk = 0.8.
The perturbation from the tip was included using the jellium model approximation
with a tip voltage producing a local density of ν = 1.3 under the tip. The blue color
scale shows the density in regions with filling factor ν < 1, the pink color scale shows
shown region ν > 1, and incompressible regions of ν = 1 are shown in green. The
IR formed with this amplitude of disorder is significantly distorted by disorder, and
contains many islands.

are equivalent. In the presence of a large magnetic field, it is more convenient to

consider the density profile instead, as the Coulomb interaction of the electrons with

the charged donor layer will produce a density profile that follows close that at zero

field [51], but results in a drastically different potential profile. As can be seen from

figures 5-16(a) and (d), reducing the setback distance results in a smoother disorder

potential profile. This can also be seen in the images of the Fourier transform in (b)

and (e) and in the autocorrelation images in (c) and (f).

The effect of increasing the setback distance is twofold: it affects both the length-

scale of the fluctuations and it reduces the overall amplitude of the fluctuations. This

can be seen clearly in the line cuts of the density profile shown in figure 5-17(a), and

in the histograms of the 2DES density shown in figure 5-17(b). Figure 5-17(c) shows

line cuts of the autocorrelation function for the two setback distances. What is im-

portant to note is that although increasing the setback does decrease the amplitude
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of the short lengthscale fluctuations, it does not create long lengthscale correlations

in the potential. In both cases, the correlation length is comparable to the setback

distance. The same long wavelength fluctuations are present in both the 20 nm and

the 50 nm setback data (see 5-17(a)): however, they are easier to see in the 50 nm

data because they are not masked by the larger short lengthscale fluctuations present

in the 20 nm setback data.

Figure 5-18 shows a simulation of the IR in the presence of disorder from 1.5×1011

cm−2 randomly ionized donors with a 50 nm setback. What is quite surprising is that

the incompressible strip formed by the tip looks nothing like a ring: its shape has

been significantly distorted by disorder. Furthermore, the IR contains a multitude

of quantum dot islands. Such a large number of hotspots with such an irregularly

shaped IR suggests that the disorder model we have used drastically overestimates

the disorder present in our real sample.

5.6.2 Effects of Donor Correlations

During the MBE growth process, the silicon donor atoms are deposited randomly in

position in the donor layer. However, in the heterostructures that we use, only a

fraction of the donors atoms are ionized. The fact that the donors are only partially

ionized allows the system to select the positions of the ionized donors in a way that

minimizes the repulsive Coulomb repulsion between them [143, 144, 145, 146, 147, 148]

. This is illustrated in figure 5-19. At low temperatures, the non-ionized electrons

become trapped into charge neutral DX centers5, and charge in the donor layer be-

comes kinetically frozen [143, 145]. If the ionized donors were free to chose any lateral

position in the layer, they would form a Wigner crystal. Because they are restricted

to the random positions of the silicon donor atoms, they form instead a disordered

Wigner glass.

The correlation in the position of the donors can significantly reduce the disorder

potential seen by the 2DES. For our simulations, we will use a simpler model for the

donor layer than the Monte Carlo simulations of the Wigner glass that captures the

5For more information about DX centers, a good starting reference is Davies [131], Chapter 5
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Figure 5-19: The results of Monte Carlo simulations of the formation of a Wigner
glass in the donor layer of a GaAs/AlGaAs 2DES heterostructure at an ionization
level of 5%. The dots and bullet show the positions of neutral and positive donors,
respectively. Figure reproduced from [148].

same basic idea. The model is from Efros [149, 150] and is designed to describe

the reduction of the amplitude of disorder fluctuations due to donor correlation.

In the non-equilibrium model discussed in [149], the donor layer was treated as a

non-degenerate electron plasma at high temperatures. As the system is cooled, the

electrons in the plasma become frozen out at a temperature comparable to that

required to observe persistent conductivity (∼120 K). Due to this freeze-out, the

fluctuations in the donor layer at lower temperatures represent a snapshot of the

fluctuations in the electron plasma at the freeze-out temperatures. In this model, the

fluctuations as seen from the 2D electron layer can be treated as having the same

form as those for randomly ionized donors, but with a reduced amplitude set only by

the freezeout temperature:

〈δn(r)δn(0)〉 = ceff =
εkBT0

4πe2s
(5.12)

where ε is the dielectric constant, T0 is the freezeout temperature and s is the setback

to the donor layer. Essentially, the residual fluctuations in this model correspond to
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Figure 5-20: Calculated IR including the effects of donor correlations using a ceff =
1.5× 1010 cm−2.

defects in the Wigner lattice in the ordered donor layer. Using T0 = 120K give a

effective donor concentration of about 1.5 × 1010 cm−2. This model is particularly

simple to implement: it involves putting in only ceff random donors and replacing the

remaining charge in the donor layer with a uniform sheet.

Using this disorder model, the calculated ν = 1 IR is shown in figure 5-20. The

ring is now clearly circular and has a much smoother shape. Also, the ring contains

quantum dot islands at far fewer tip positions, more consistent with our interpretation

of the experimental results.

5.6.3 Moving the Tip: Creating a Simulated SCA Image

As discussed in section 3.2, in a picture where the IR forms a simple ring of constant

shape, the intersection of the IR with the fixed hotspot in the 2DES, the SCA images

show arc shapes that directly reflect the shape of the IR formed around the tip. This

becomes a bit more complicated when we include the effects from disorder distorting

the shape of the IR. In particular, one cannot predict the shape of the arcs in the

SCA image directly from the shape of the IR shown in figures 5-18 and 5-20 because

as we move the tip, the shape if the IR will also change. To correctly predict the
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Figure 5-21: By repeating the simulation for a 3 × 3 µm area with the tip centered
at positions on a 50 nm grid, we can produce a 3× 3 µm simulated SCA image that
is 61× 61 pixel, shown in (b). We produce this simulated “image” by identifying tip
positions where there is an island in the IR, using an algorithm described in the text.
We can also repeat this for a hole-bubble, to produce a simulated hole-bubble SCA
image shown in (c). Possible candidates for arcs obeying the electron hole bubble
symmetry in (b) and (c) are marked with dashed lines.

shape of the arcs that we see in the images, we would have to perform a series of

simulations that determine the locus of tip positions that maintain the intersection

of the changing IR shape with a given hotspot.

To do this, we have performed a series of simulations of the the IR in a 3× 3 µm

area where we have moved the tip to different positions on a 50 nm grid, simulating

a 61x61 pixel SCA image. These simulations are very time consuming: on a 1GHz

desktop computer, each simulation takes 10 minutes to run. To complete simulation

for the entire 61×61 grid of tip positions requires 25 days of continuous computation.

A subset of the results of such a series of simulations are shown in figure 5-21(a). In

the SCA experiment, we directly measure the resistance of the IR. We will not make

any attempt to calculate the resistance of the triangular tunnel barrier formed by

the calculated IR, nor will we attempt to model the resonant transport through the

quantum dot islands. Instead, we will pursue a very simple analysis to extract a

prediction of the shape of the arcs in our SCA images. By comparing the shapes of

the arcs predicted by the simulations to those seen in the experiment, we may be able

to directly infer the nature of the disorder in our sample.

The analysis is as follows. For each simulated image showing the IR at a given

tip position, we will perform an image analysis to determine if there is and isolated
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ν > 1 or ν < 1 island inside the IR. If there are no islands in the IR, then we will

assume that the IR has a large resistance and we will put a “0” in the simulated

SCA image to indicate that the central bubble is not charging. If there is at least one

island embedded in the IR, we will assume the IR has a low resistance and we will

put a “1” in the simulated SCA image.

Unfortunately, such a simple analysis produces a nearly white image, as there

are frequently very small islands in the IS (often just a single 10x10 nm pixel). We

can improve the results by requiring that the island in the IR has a size beyond a

certain threshold to produce resonant tunneling. This thresholding eliminates noise

from anomalously small islands that arise in our simulation due to our use of the

Thomas-Fermi approximation on such small lengthscales. Such an analysis for a 50

nm threshold island size is shown in figure 5-21(b). Here, we can start to see the

signatures of arcs in the simulated SCA image. Furthermore, the arcs do not form

close ring, as is observed in the experiment. Figure 5-21(c) shows the same analysis

from a set of simulations using a hole bubble. A careful examination shows that some

of the partial arcs in the hole bubble images are inverted, as we would expect from the

electron-hole bubble symmetry mechanism we proposed based on the experimental

data. There is still too much background noise in the image, however, to allow a

conclusive comparison.

Ultimately, such an analysis is limited in usefulness by the background noise from

the large number of islands present in the rings even with the reduced disorder. It

would not work at all on the higher disorder images such as shown in figure 5-18,

as these images always display a large number of islands in the ring. An alternative

would be to attempt to isolate the effect of a hotspot at a particular position in the

sample. For example, the position of a potential hotspot could be chosen by eye and

we could perform a similar analysis but only output a bright pixel in the simulated

image if there is an island in the IR and that island intersects our position of interest.

This would produce a simulated SCA image that shows only arcs associated with a

single hotspot position. Such an analysis, along with simulation on a finer grid of

tip positions, could be useful in predicting the shape of the arcs in the image and
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in determining if the partial arcs have the same electron-hole bubble symmetry as

observed in the experiment.

Finally, while this simple analysis should be sufficient to predict the shape of the

arcs we observe in the SCA images, it is likely that it will not predict the density of the

arcs with any degree of accuracy. In particular, simply the presence of an island in the

IR will not guarantee a conductance enhancement. The conductance enhancement

due to resonant tunneling will depend on the degree to which the tunnel barriers on

either side of the island are symmetric [131], as well as quantum confinement and

Coulomb blockade effects that we have not accounted for.

5.7 Simulating the incompressible bulk

Aside from applications in simulating the details of our experiments, the software we

have developed can also be used to model other aspects of the quantum Hall system.

In particular, we have used it to model incompressible strips in the bulk 2DES.

In the nonlinear screening models, the quantized Hall resistance arises due to

localization of electrons in the bulk into small puddles by a percolating incompressible

strip. Using our simulations, we can predict this localization and visualize the effects

of disorder and filling factor on the shape of the incompressible strip.

Some of these results are shown in figure 5-22. At low disorder, the percolating

strip is quite wide and occurs only very near to ν = 1. The simulation shows many

isolated islands that are small enough to have significant Coulomb blockade energies,

as observed experimentally in [116]. At higher disorder, shown in (b), the strip

becomes narrower due to the larger mean square disorder gradients, and percolates

for a wider range of filling factors. At low magnetic fields, the IS becomes very

narrow, as shown in 5-22(c). The narrow incompressible strip has presents much

lower tunneling resistance, and the Hall plateaus become narrower. Also, at these

low fields, the disorder fluctuations in density ∆ndis can become larger than the

Landau level degeneracy nLL, and multiple Landau levels are occupied. In this limit,

the compressible regions corresponding to different Landau level fillings follow the
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Figure 5-22: Simulations of the incompressible strip that percolates through the bulk
at integer filling factor. (a) and (b) show 5 × 5 µm simulations of the ν = 1 state
with correlated (a) and uncorrelated (b) donors and a 50 nm setback. The pink and
blue regions are ν < 1 and ν > 1 respectively, and the gray region corresponds to
local incompressible ν = 1 state. (c) 3 × 3 µm simulation with uncorrelated donors
showing filling factors at ν = 10. Black regions are incompressible strips at integer
filling. The colored areas represent metallic regions of different partially filled Landau
levels.

same paths as the drift trajectories in the single particle models. This suggests that

in this regime, the transport follows the same phenomenology as predicted by the

single particle models, as suggested by Cooper et al. [52] and later by Ilani et al.

[116].

5.8 Conclusions

We began with a very modest plan of modeling the electrostatics of our tip in order

to obtain estimates of the capacitive signals we expect to observe in our experiment.

We were able to model the capacitance versus distance curves for our tips and the

signal levels from the gate remarkably accurately. The results provide very useful

insight into the optimal size and shape of the tip for our experiment. They also

corroborate well with the empirical evidence we have gathered from experience with

different sized tips discussed in chapter 2. Comparison with the simulations provides

a method of quantitatively determining the size of the tip in situ purely from the

capacitance measurements we perform in our scanning experiment.

Incorporating the simple physics of the self-consistent screening model developed
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for the quantum Hall effect [47] has allowed us to predict the size and width of incom-

pressible strips that would exist in the experiments from chapter 3 in the absence of

disorder. The lever arm reduction of the voltage appearing across the incompressible

strp was obtained, along with the value of the capacitance of the bubble to the tip

and its surroundings. We found that the bubble’s capacitance to the bulk dominated

over the other contributions. The bubble’s calculated self capacitance was found to

be very close to the order of magnitude estimates from chapter 3.

Extending our simulation to 3 dimensions, we simulated the incompressible ring in

the presence of disorder from remote ionized donors, allowing us to directly visualize

the effect of disorder on the ring. We found evidence from these results that donor

correlations play a role in our high mobility heterostructure, and the simulations allow

us to directly see the fluctuations that lead to the hotspot islands in the incompressible

strip. Work has been started on simulating the effect of the disorder on the arcs

seen in the SCA images, and through comparison with these results, we will be

able to infer quantitative details concerning the nature of disorder in high mobility

heterostructures.
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Chapter 6

Future Research Directions

In this thesis, we ahve studied transport through a ring shaped region of incompress-

ible states in the quantum Hall effect. We characterized transport through incom-

pressible regions formed from orbital energy gaps at ν = 2 and ν = 4 as well as at

exchange-enhanced spin gaps at ν = 1 and ν = 3. In all cases, transport was dra-

matically enhanced by resonant transport through Coulomb blockaded quantum dot

islands induced by disorder. The existance of these islands and the shape of the arcs

we observed provided a unique characterization of disorder in the high mobility 2DES.

Measuring the relative tunneling resistance at different filling fractions characterized

the magnitude of the micrscopic energy gaps in the quantum Hall effect.

A natural extension of these results would be to study the fractional quantum Hall

effect [151, 152, 153]. As shown in figure 6-1, at low temperatures the 2DES displays

a staggering number of fractional quantum Hall states at high magnetic fields. These

states arise due to the effects of strong correlations between interacting electrons when

only the first or the second orbital Landau levels are partially filled. Just as we did

for the orbital and exchange-enhanced gaps in the integer quantum Hall effect, we

could use our tip to create an incompressible ring formed by the gaps from fractional

states. At 300 mK, such an incompressible strip was found to be too leaky. Study of

fractional quantum Hall incompressible rings will require larger magnetic fields and

lower temperatures.

At lower temperatures with more than two orbital Landau levels filled, it appears
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Figure 6-1: The fractional quantum Hall effect in a sample with a mobility of 1.3×106

cm2/Vs and at a temperature of 150 mK. Reproduced from Willett et al. [151].

that electron interactions do not create the correlations that lead to the fractional

quantum Hall states. Instead, they are believed to create electron crystals (charge

density waves) [127], as shown in figure 6-2(a). At 1/4 and 3/4 filling of a spin splig

Landau level, this produces a Wigner-crytal-like lattice of clumped electrons, referred

to as the “bubble” phase. At half filling, a “stripe” phase is predicted. There is

significant experimental evidence for the bubble phase in the form of the reentrant

integer quantum Hall effect [128, 154] (see figure 6-2(b)) and in microwave resonance

experiments (cite), as well as for the stripe phase in the form of anisotropic transport

measurements at half filling of higher Landau levesl [155]. Reentrant phases have

also been observed in the first orbital Landau level [102], shown in figure 6-2(c). The

origin of these states remains unexplained. All of these exotic phases involve highly

resistive states of the 2DES that occur at specific filling fractions. Similar to work

we have already done, we could use our microscope to induce a ring shaped region

of such a states, and to probe it’s local conductance. For example, we could start
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Figure 6-2: (a) Predictions of the bubble and strip phases of electrons in higher
Landau levels. Adapated from Fogler et al. [127]. (b) Transport measurements shown
the reentrant and anisotropic phases in higher Landau levels taken at 50 mK. The
sample has a moblity of 1.1× 107 cm2/Vs and a density of 2.7× 1011. Adapted from
Cooper et al. [154]. (c) New insulating states in the first orbital Landau level. The
dashed line shows data taken at 50 mK and the solid line shows data taken at approx
15 mK. Adapated from Eisenstein et al. [102].

with ν = 4.6 in the bulk and apply a voltage to induce a region of ν = 4.9 under

the tip. These two regions would be separated by a ring shaped region at ν = 4.75.

This would allow use to probe and image the resistance of a micrscopic region of

bubble-phase electron crystal.

Ultimately, this technique can be applied to any system where the conductance

properties vary peridically with the electron density. Moving away from the 2DES, a

natural candidate is the 2D hole system (2DHS) in GaAs. Holes in GaAs have a much

higher effective mass, which increases the strength of electron interactions relative

to quantum kinetic energies1. Finally, the technique is not limited to GaAs based

materials. In particular, the recently discovered quantum Hall effect in graphene [156,

157] has received a lot of interest due to the peculiar band structure of graphene. The

electrons in graphene obey a Dirac-like equation of motion and display an intriguing

half-integer quantization of the Hall resistance. Our technique could easily be applied

to study localized states in the quantum Hall effect in graphene. Such measurements

would provide a unique characterization of disorder in these materials, something

that is currently very poorly understood, as well as a local probe of the nature of

localiation of Dirac fermions in this exotic quantum Hall effect.

1For example, the exchange-enhanced spin gap in holes is much than the oribital gaps. This is
reversed from the situation in the 2D electron system
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Appendix A

Measuring the Input Noise of the

Capacitance Bridge

During the operation of the bridge, we do not need to know either the gain nor shunt

capacitance in order to calibrate our capacitance measurements, as this can be done

using the known value of the reference capacitor. However, to optimize the sensor

design, a knowledge of the shunt capacitance as well as the absolute value of the input

voltage noise are required.

In our experiment, we use a bias transistor as our reference capacitor. The source-

drain capacitance of a pinched-off FHX45X transistor was measured directly against

a 590 fF reference capacitor. This reference capacitor was independently calibrated

using a General Radio type 1615A hand-operated capacitance bridge. The source-

drain capacitance at 4K was measured as 106 fF. The measurement was also sensitive

to whether or not the metal plane under the GaAs chip mount was grounded or

not. Ungrounding this metal plane lead to a measured capacitance value of ∼120 fF.

This suggests that the source drain capacitance of the bias transistor is dominated

by the electrode and/or the channel capacitance, and that the contribution from the

capacitance from the source lead wire bond to the center point of the bridge was

about ∼20 fF.

The bias transistor is convenient because it requires one less wire to the sensor. It

is also useful for performing gain measurements: unbiasing the gate of the bias tran-
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Figure A-1: A measurement of the lockin signal with a small AC voltage applied to
the bias transistor source as the bias transistor is pinched off. The ratio of the lockin
signal before and after pinch off is equal to the ratio of the total capacitance at the
center point of the bridge to the bias transistor source-drain capacitance. For this
transistor mount, the total center point capacitance was 800 fF. The spikes in the
signal during pinch off are due to resonant tunneling through localized states in the
short channel.

sistor, we can apply a known AC excitation directly to the gate of the measurement

transistor and directly measure the total amplifier gain. It also provides a simple

method of measuring the shunt capacitance. To do this, we apply a small AC exci-

tation to the source of the bias transistor and monitor the lockin signal as the bias

transistor is pinched off. The ratio of the amplitude of the lockin signal before and

pinch off is equal to the ratio of the total center point capacitance to the reference

capacitance. An example of such a measurement is shown in figure A-1.

Once the gain of the amplifiers is known, the input noise can be calculated by

measuring the noise at the lockin amplifier using its internal noise mode and then

dividing by the gain. This will directly give an input noise in nV/
√

Hz at the frequency

that the lockin is set to.

Performing a frequency sweep using the lockin amplifier would be an exception-
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Figure A-2: A broadband noise spectrum measured using the FFT mode of the
TDS744. The vertical scale shows the amplitude of the FFT in dB relative to a 1V
signal per frequency bin.

ally slow process: lockins are inherently very narrow band instruments designed for

optimal out-of-band noise rejection. As such, they are not terribly well suited for

measuring broadband noise. A much more efficient way to measure the noise spec-

trum is to digitize a time trace of the amplified signal and then take a Fast Fourier

Transform (FFT). This can be done conveniently using the TDS744 digital oscillo-

scope to measure the signal from the lockin “Monitor Output” connector, which gives

a buffered copy of the broadband signal after the lockin input amplifier. The TDS744

should be set to “HighRes” mode, which will oversample the signal and average the

oversampled point. This prevents high frequency noise from being aliased down into

our measurement window. The math mode of the TDS744 should be configured to

take the FFT of the time trace and then to average the amplitude of the FFTs of

subsequent time traces. The frequency resolution is given by 2 ∗ π/∆t, where ∆t is

the spacing between points in the time trace. This is determined by a combination

of the time base of the oscilloscope (ms/division) and the record length (number of

points per time trace). We typically use a 15,000 point record length.
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Figure A-3: (a) The transistor setup used to measure the minimum possible center
point bridge capacitance CT . (b) A pinch off measurement to determine the ratio
of the CT to the bias transistor source-drain capacitance. The measurement shows
that the minimum possible capacitance is about 600 fF. The mount fabrication and
capacitance measurement was performed by Eric Lin.

The result of such a measurement is shown in figure A-2. The units on the vertical

scale are “dB-V per frequency bin”. This corresponds to the total integrated FFT

amplitude in one frequency division relative to a 1V sine-wave signal. We should

be able to convert this to directly to a noise reading in nV/
√

Hz by dividing by the

square root of the spacing of the points in frequency. For some reason, this does not

seem to work. Nonetheless, the trace provides a quantitative measure of the relative

noise magnitudes at different frequencies, and can be calibrated to units of nV/
√

Hz

by normalizing to a value at one frequency measured using the lockin noise mode.

As a final note, an absolute minimum possible shunt capacitance for a config-

uration using these transistors was obtained by Eric Lin by measuring the shunt

capacitance of a bias and measurement transistor with no tip, shown in figure A-3.

For this setup, a total bridge capacitance of 600 fF was measured. This suggests the

smallest possible shunt capacitance possible using wire-bonded transistors is around

600 fF. It also suggests that the added shunt capacitance from the tip is on the order

of 200 fF.
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Appendix B

Transconductance Calculations and

Noise Considerations for the

HEMT Amplifier

The charge sensor in our experiement uses a High-Electron Mobility Transistor (HEMT)

to convert AC charge on its gate into a voltage at the input of our lock-in amplifier.

In order to better understand hwo the parameters of the HEMT affect this measure-

ment, we derive in this appendix the gain of the circuit in terms of the properties of

the HEMT field effect transistor.

B.1 Properties of a FET

A field effect transistor (FET) consists fo a channel whose resistance is controlled by

an external gate voltage, as shown in figure B-1(a). Typcial I-V curves of a FET are

shown in figure B-1(c). At low source-drain voltages, the drain current is proportional

to the source-drain voltage, and the FET acts like a variable resistor. This is called

the linear regime. At larger source-drain voltages, the current increases sublinearly,

and eventually saturates. The source-drain current after saturation is set only by the

gate voltage.

A common and useful small signal model for a FET is shown in figure B-1(d).
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Figure B-1: (a) The layout of a typical field field effect transistor and (b) the schematic
symbol used. (c) I-V curves for an ideal FET. The dotted line shows the saturation
current for the quadratic model. (d) A common model of a FET using a current
source in parallel with an output resistance.

The FET is modelled as an ideal current source in parallel with a ouput resistance ro.

The current source provides a small signal current given by gmvg, where gm is called

the transconductance, and is defined by:

gm(Vg, Vd) =
∂Id

∂Vg

∣∣∣∣∣
Vd

In general, the transconductance depends on both the DC gate voltage and the DC

drain voltage. The output resistance ro is given by:

ro(Vg, Vd) =
∂Vd

∂IE

∣∣∣∣∣
Vg

It too will depend in general on both the gate voltage and the drain voltage. This

model becomes particularly simple in the saturated regime. After saturation, the

output resitance r0 → ∞ and the FET can be considered an ideal (small signal)

current source. Also, in saturation the transconductance depends only on the gate

voltage. This model is also very useful when we are not in saturation, although we

have to keep in mind that ro and gm will depend on Vg and Vd. In the next section,

we will calcuate the I-V curves of a FET using a simple model. From these, we will

obtain expressions for the transconductance and output resistance in the linear and

saturated regimes as a function of the gate and drain voltage, as well as the physical

properties of the transistor.
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Figure B-2: Dimensions of the FET. (a) Top view. (b) Side view, showing separation
of the channel from the gate.

B.2 Modelling the FET

Our derivation wil be based on an analysis of a MOSFET given in [158] . We will

consider a channel of width W and length L shown in figure B-2(a). The gate will be

sepaarted from the channel by a distance d by a insulator with dielectric constant ε.

Applying a voltage VSD across the source and the drain, a current will flow between

the source and the drain given by:

ISD = VSD/RSD = GSDVSD

where GSD is the total conductance of the channel. We will consider first the linear

regime, where VD << V D
G , where V D

G is the gate voltage required to fully deplete the

channel. In this case, the density across the channel can be considered approximately

constant. We will take the conductivity of the layer to be linearly proportional to the

electron concentration:

σ = neµ

In particular, this assumes that the mobility µ of the 2D layer is independent of

density. In the linear regime, the conductivity of the channel is constant, and the

total conductance is given by:

G =
σW

L
=

neµW

L
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The electron density in the channel is determined by the gate voltage through the

capacitance to the gate:

n = n0 +
1

e

εVG

d
=

ε

ed
(VG − V D

G )

where V D
G = − ed

ε
n0. We then have:

ID =
µε

d

W

L
(VG − V D

G )VD

and the transconductance

gm =
µε

d

W

L
VD (B.1)

and the output resitance

ro =
d

εµ

L

W

1

VG − V D
G

At higher currents, the local voltage VC(x) in the channel due to the voltage

drop from source to drain will now be significant enough to modify the local charge

density n(x) in the channel due to the capacitance to the gate. We will consider an

infinitessimal section of the channel of length dx. By conservation of current, the

current through this section must be equal to ID. We can relate the current through

this section to the drop dVC

ISD =
n(x)eµW

dx
dVC(x)

The local density at position x of the channel is now given by

n(x) =
ε

ed
(VG − V D

G − VC(x))

This gives the relation

IDdx =
εµ

d
W (VG − V D

G − VC(x))dVC(x)
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The drain current is constant across the channel. Integrating:

ID

∫ L

0
dx =

εµ

d
W

∫ VDS

0
(VG − V D

G − VC)dVC

gives

ID =
εµ

d

W

L

[
(VG − V D

G )VDS − (VDS)2

2

]
VDS < VG − V D

G

As we increase the drain voltage, the current does not increase as quickly as for a

simple resistor because portions of the channel are at a lower electron density and

have a lower conductivity. Once we reach the point where VDS > VG − V D
G , a narrow

depletion region forms near the drain. This region has a very high resistance. As

we increase the drain voltage further, the width of this region self-consistenly adjusts

itself to accomodate the extra voltage drop, keeping the current at a constant value.

Before saturation, the transconductance has the same form as in the linear regime:

gm =
µε

d

W

L
VD

while the output resistance has increased:

ro =
d

εµ

L

W

1

VG − V D
G − VDS

After saturation, ro → ∞ and VD is replaced by VG − V D
G in the transconductance

expression.

The only assumption we have made that may not hold for at HEMT transistor1

is that the mobility µ is independent of density. In the 2DES at low temperatures,

simple models (see [131]) predict that the mobility varies as a power law µ ∼ n1.5. In

the linear regime, this simply means that in the expression for the transconductance,

µ depends on VG. In the non-linear regime, this will lead to additional terms in the

integration accouting for the fact that the mobility also varies with the gate voltage.

The model would no longer be quadratic, but the corrections would be simple to

1Aside from effects from extremely short channels
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Figure B-3: (a) Model of a common-source amplifier. (b) Eliminating the effect of the
output resistance ro by placing a second transistor in “cascode” with the first, which
acts as a low-impedence current to voltage converter. The increases the voltage gain
and the bandwidth if there is a large capacitance at the drain of the first transistor
(such as a cable leading out of a cryostat). (c) A similar solution using an AC coupled
current amplifier. Note that the coupling capacitor must be very large so that its AC
impedence is smaller that the 50 ohm input of the current amplifier.

include.

B.3 Amplifier Design

These expression can easily be applied to predict the gain of a common-source voltage

amplifier shown in figure B-3(a). In the amplifier, a drain resistor is used to convert

the FET current into an output voltage vo. In this case, the voltage gain is given

by the drain current multiplied by the parallel resistance of Rd and the FET output

impedence ro:

vo

vg

= gm


 1

1
Rd

+ 1
ro




Note that if we are not in the saturated regime, the voltage gain is reduced because

the transistor current source is now driving a lower impedence resistor formed from

the parallel combination of Rd and ro. Effectively, some of the current is “leaking

out” through the low output impedence of the FET. The situation can be remedied

by instead using a current-readout method. This can be done either by including

a second FET in “cascode” with the HEMT [159, 160] shown in figure B-3(b), or
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by directly using an AC coupled current amplifier shown in figure B-3(c). For the

cascode, biasing the circuit can be tricky [160]. The current amplifier is easier to

setup, although constructing a stable, low-noise, wide bandwidth current amplifier

can be difficult. A design by Oliver Dial using an Analog Devices current-input op-

amp was used occasionally in our experiment. Both of these techniques eliminate the

effects of the small output resistance ro on the gain.

The common-source amplifier shown in B-3(a) will also suffer from a poor band-

width if there is a large capacitance from the cable connected to its drain, since

this capacitor must charge up through the impedence provided by the parallel com-

bination of Rd and ro. By providing a AC low impedence point at the drain and

effectively measuring currents rather than voltages, the designs in B-3(b) and (c) also

significantly increase the bandwidth of the amplifier.

B.4 Charge Transconductance

In our experiment, we are fundamentally concerned not with voltage amplificatoin,

but instead with amplifying a signal proportional to the charge on the gate. For this,

we will define a charge transconductance:

em =
∂ID

∂qG

=
∂ID

∂VG

∂VG

∂qG

=
gm

C

Using the C = εWL/d and expression B.1 for gm gives

em =
µ

L2
VDS (B.2)

The charge transconductance is independent of the width of the channel, but depends

strongly on the channel length.

For the operation of the capacitance bridge, we will consider the situation shown

in figure B-4. Here we have a charge q that is distributed across a the gate of the

transistor and a capacitance C0. C0 represents the sum of all the capacitances at the
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Figure B-4: The amplifier shown with the capacitance C0 from the bridge and a
charge q.

centerpoint of the bridge except for that of the gate of the measurement transistor:

C0 = Csample + Cref + Cstray

We are interested in the drain current modulation id for a given q at the center of the

bridge. This charge q will generate a voltage v given by:

v =
q

CG + C0

where CG is the transistor gate capacitance. Using id = gmv and expression B.1 for

the transconductance gives:
id
q

=
CG

C0 + CG

µVDS

L2

Note from this expression that increasing CG by making the channel wider but keep-

ing the same channel length will always result in a larger modulation of the drain

current for a given input q. For a given C0 imposed by experimental limitations

(stray capacitance of wire bonds, sample capacitance, etc), we should always use a

transistor with a gate length L as short as possible but with a gate width W such

that CG is comparable to or greater than C0. In particular, it means that cleaving the

measurement transistor will actually decrease the charge amplification. This can be

understood physically from the expression B.2 for the charge transconductance em.

Since em is independent of channel width, increasing the FET input capacitance by

using a wider channel will result in a larger fraction of the charge q being put on the
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transistor gate.

In practice, there is a limit to how wide the channel is made on commercially

avialable HEMTs. The effective channel width can always be made wider by combin-

ing multiple HEMTs in parallel, although one has to be careful that the wire bonds

are kept short in order to prevent adding stray capacitance.

B.5 Noise

In the previous section, we showed that the charge amplification will always increase

if we use transistor with a wider channel. However, this does not neccessarily mean

that our charge sensitivity will increase since this also depends on how the noise of

the transistor changes.

Fortunately the 1/f noise generated by a FET is generally inversely proportional

to the number of carriers in the channel, or equivalently the area of the channel (see

[161, 73] and section VIII.4 of [72]). This suggesets that the wider channel will not

only increase the charge amplification, but also decrease the noise, resulting in an

even stronger enhancement of the sensitivity. Noise, however, is not a perfect science,

and systematic experiments would be needed to substantiate these claims.
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Appendix C

Images Taken with a Smashed Tip

In this appendix, we include some images from an earlier cooldown that were taken

with a smashed tip. It was with this smashed tip that we first observed the resonances.

However, due to the irregular shape of the tip, the incompressible ring had a very

irregular shape, making it difficult to interpret the data. The tip from this run showed

a capacitance “upturn” of about 3 fF and showed a gate smear of about 3 µm. These

both suggest that the tip was very, very large, likely having a flattened end with a

diameter of possibly as large as 5 µm.

During this run, we frequently touched the surface during recondensation. After

the tip had touched the surface, a “donut” shaped perturbation of the electron density

was seen, presumably due to the deposition of charge into surface states. This charge

would spread outwards and eventually discharge over a period of about 12 to 24

hours. Curiously, on re-inspection the edges of the “donut” often seem to correlate

with shapes seen in the filaments in the images, suggesting the possibility that before

it discharged the donut may have been an indication of the shape of the flat end of

the tip.

The images will include only brief captions describing the magnetic field and the

approximate tip voltage they were taken at.
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Figure C-1: 14 × 14 µm in-phase and lagging phase electron bubble images at 6.9T
and -1.25V. The charge perturbation from touching the surface is also shown.

���M

Figure C-2: 10 × 10 µm in-phase and lagging phase electron bubble images at 5.5T
and -0.75V.
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Figure C-3: 10× 10 µm electron bubble magnetic field sweep from 5.5 to 8.0 in 0.1T
steps at a tip voltage of +1.25V.
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Figure C-4: 10× 10 µm electron bubble tip bias voltage sweep from +1.25 to +0.05
V at 6.9T.
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Figure C-5: 10× 10 µm ν = 2 hole bubble tip bias voltage sweep from -2.25 to -1.00
V at 2.6T. A “donut” charge perturbation is visible in the images.
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Figure C-6: 10× 10 µm in-phase and lagging phase images at 6.4T and 0.25V (near
null) with a 5 mV excitation. Features in the image are far sharper that we expect
from the electrostatic resolution of the tip determined from the smearing of the gate
edge. Similar over-sharp features were seen using an etched tip that had not touched
the surface.

���M

Figure C-7: 10× 10 µm in-phase and lagging phase images at 6.4T and 0.25V (near
null) with a 10 mV excitation. Compared to the 5 mV images, the sharp edges are
smeared slightly, although they are still much sharper than the electrostatic resolu-
tion.
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Appendix D

Depleting the Sample with a

Global Backgate

Since the backgate in our experiment consists of a metal film evaporated on the

back of the insulating intrinsic GaAs substrate, we need to apply several hundred

volts to it to achieve a significant density change. To calibrate this, we perform

magnetocapacitance traces as a function of the backgate voltage. These results are

shown in figure D-1. There are a couple of things that are peculiar about these

measurements. While the magnetocapacitance dips varied linearly with voltage over

much of the backgate voltage range, near zero voltage it curved and came in flat.

This suggests that there is a layer below the 2DEG between it and the backgate that

needed to be depleted before we could gate the 2DES. In addition, as we start to

deplete the sample and come out of this curved region, the depth of the MC dips

increases dramatically. This indicates that at the lower densities, the charging of the

sample is decreasing in Hall plateaus. This could be related to a change in the density

under the gate relative to the bulk 2DES, producing changes in the bulk charging as

discussed in section 2.6.

A second strange behavior was that after stepping the backgate voltage, it took

several minutes for the density to stabilize, as shown in figure D-2. This suggests that

the space charge layer below the 2DES was charging and discharging very slowly. This

limited our ability to sweep the bias voltage quickly. This limited us to steps in bias
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Figure D-1: A color-scale plot of the in-phase charging signal as a function of magnetic
field and backgate voltage. The traces were taken before walking in, with the tip about
1 mm from sample.

voltage followed by sweeps in magnetic field for the data shown in figure D-1, which is

very time intensive and uses considerably more helium, since the magnet was sweeping

continuously.

Finally, a careful examination of the data in figure D-1 shows a second set of

Landau fans. This can be seen more clearly in a numerical derivative of the data,

shown in figure D-3. The peaks in this second Landau fan have a steeper slope with

backgate voltage, suggesting the presence of a second 2D layer forming below our

2DES when we apply a backgate voltage. Since it was not between the tip and the

2D layer of interest, it did not significantly affect our capacitance measurements.
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Figure D-2: Charging signals as a function of time after stepping the backgate voltage
at zero magnetic field. The backgate initially at 0V, and was stepped at different times
to the voltages indicated in the plot. Curiously, stepping the backgate to negative
voltages resulted in much longer relaxation times that returning it to 0V.
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Figure D-3: The derivative of the magnetocapacitance data, taken in the vertical
(magnetic field) direction. A second set of Landau fans are visible upon applying the
backgate voltage. The fact that the second set of peaks has a steeper slope suggests
that they arise from a second 2D layer formed behind the 2DES.
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Appendix E

Distributed RC Network

We will start with a single RC, as shown in figure E-1(a). The charge on the capacitor

C is determined by the voltage V1, which is given by a voltage divider between the

capacitor and the resistor:
V1

V
=

ZC

ZC + R

where ZC is the complex impedence of the capacitor:

ZC = 1/iωC

The total charge on the capacitor as a function of the frequency of the applied voltage

is then:
Q∗

T (ω)

QT (0)
=

1

1 + R/ZC

(E.1)

To calculated the total charge on all of the capacitors in the two-element RC circuit,

we will need to find expressions for V1 and V2 in figure E-1(b). V2 is determined by a

voltage divider between R and Z2:

V2

V
=

1

1 + R/Z2
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Figure E-1: Schematics for (a) 1 element RC network, (b) 2 element RC network,
and (c) 3 element RC network.

Z2 is given by the parallel combination of the capacitor C on the left branch and the

series RC on the right branch:

1

Z2

=
1

ZC

+
1

R + ZC

V1 is determined from V2 using the same divider as the single element case:

V1

V
=

1

1 + R/Z2

· 1

1 + R/ZC

The total charge QT = CV1 + CV2 is then:

Q∗
T (ω)

QT (0)
=

1

1 + R/Z2

(
1 +

1

1 + R/ZC

)
(E.2)

Repeating this for the three element case, Z3 will be given by:

1

Z3

=
1

ZC

+
1

R + Z2

and we will have:

Q∗
T (ω)

QT (0)
=

1

1 + R/Z3

[
1 +

1

1 + R/Z2

(
1 +

1

1 + R/ZC

)]
(E.3)

The continum limit was calculated by F. Stern [162] for a 1D channel, and for a

circular annulus or disc by Goodall et al. [91]. It turns out that the cicular ring is
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Figure E-2: In-phase (a) and lagging-phase (b) components of the total charge on the
capacitors. In the discrete element models, elements were chosen so that

∑
C = 1

and
∑

R = 1. In the continuum model, we took εL2/σxxd = 1. In (b), the real
compenent was also plotted for the continuum model. This is to demonstrate the
interesting fact that in the high frequency limit of this model, the two curves show
the same assymptotic behavior.

equivalent to the 1D case, and the two caculations give the same result. The reason is

that for a cicular disc, the increase in the capacitance of a differential radial element

at larger radii is exactly cancelled by the decrease in its resistance, so that the product

dC(r) · dR(r) remains constant. In this case, the charging signal is given by:

Q∗
T (ω)

QT (0)
= tanh




√
iωεL2

σxxd


 (E.4)

Here, ε/d is the capacitance per unit area to the gate and L is the length of the 1D

channel. For a annular ring or disc, L is the difference of the outer and inner radius.

These three functions are plotted in figure E-2. The effect of the distributed RC

is to distort the curves giving them a high frequency tail, and to lower the peak value

of the lagging-phase signal slightly to a value of about 0.42.
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[150] F. G. Pikus and A. L. Éfros. Large-scale potential fluctuations in plane layers

with impurities. Soviet Physics - JETP, 69, 1989. (english translation).

[151] R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C. Gossard,

and J. H. English. Observation of an even-denominator quantum number

in the fractional quantum Hall effect. Physical Review Letters, 59, 1987.

doi:10.1103/PhysRevLett.59.1776.

[152] J. P. Eisenstein and H. L. Stormer. The fractional quantum Hall effect. Science,

248, 1990. Available from: http://adsabs.harvard.edu/cgi-bin/nph-bib

query?bibcode=1990Sci...248.1510E.

[153] Horst L. Stormer, Daniel C. Tsui, and Arthur C. Gossard. The frac-

tional quantum hall effect. Reviews of Modern Physics, 71, 1999.

doi:10.1103/RevModPhys.71.S298.

[154] K. B. Cooper, M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West.

Insulating phases of two-dimensional electrons in high landau levels: Ob-

servation of sharp thresholds to conduction. Physical Review B, 60, 1999.

doi:10.1103/PhysRevB.60.R11285.

[155] Yong Chen, R. M. Lewis, L. W. Engel, D. C. Tsui, P. D. Ye, L. N.

Pfeiffer, and K. W. West. Microwave resonance of the 2d wigner crys-

tal around integer landau fillings. Physical Review Letters, 91, 2003.

doi:10.1103/PhysRevLett.90.016801.

230

http://dx.doi.org/10.1103/PhysRevB.59.10769�
http://dx.doi.org/10.1103/PhysRevB.41.8295�
http://dx.doi.org/10.1103/PhysRevLett.59.1776�
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1990Sci...248.1510E�
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1990Sci...248.1510E�
http://dx.doi.org/10.1103/RevModPhys.71.S298�
http://dx.doi.org/10.1103/PhysRevB.60.R11285�
http://dx.doi.org/10.1103/PhysRevLett.90.016801�


[156] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.

Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless

dirac fermions in graphene. Nature, 438, 2005. doi:10.1038/nature04233.

[157] Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer, and Philip Kim. Experimental

observation of the quantum hall effect and berry’s phase in graphene. Nature,

438, 2005. doi:10.1038/nature04235.

[158] Bart Van Zeghbroeck. Principles of semiconductor devices. Course notes for

ECEN 5355 - University of Colorado. Available from: http://ece-www.

colorado.edu/∼bart/book/book/contents.htm.

[159] Adrian T. Lee. Broadband cryogenic preamplifiers incorporating GaAs MES-

FETs for use with low-temperature particle detectors. Review of Scientific

Instruments, 60, 1989. doi:10.1063/1.1140521.

[160] Björn Starmark. A cryogenic preamplifier using a GaAs field effect transistor

input stage. Diploma thesis, Chalmers University of Technology, 1996. Available

from: http://fy.chalmers.se/∼starmark/.

[161] F N Hooge, T G M Kleinpenning, and L K J Vandamme. Experimental studies

on 1/f noise. Reports on Progress in Physics, 44, 1981. doi:10.1088/0034-

4885/44/5/001.

[162] F. Stern. internal IBM technical report, 1972. (unpublished).

231

http://dx.doi.org/10.1038/nature04233�
http://dx.doi.org/10.1038/nature04235�
http://ece-www.colorado.edu/~bart/book/book/contents.htm�
http://ece-www.colorado.edu/~bart/book/book/contents.htm�
http://dx.doi.org/10.1063/1.1140521�
http://fy.chalmers.se/~starmark/�
http://dx.doi.org/10.1088/0034-4885/44/5/001�
http://dx.doi.org/10.1088/0034-4885/44/5/001�

