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BACHELOR OF SCIENCE

Abstract

Recent technological advances have allowed for the construction of small (on the or-
der of 100-1000 nm) systems of confined electrons called quantum dots. Often kept
within semiconductor heterostructures, these systems are small enough that the elec-
trons within them occupy states with discrete energy levels. Two single quantum
dots can be placed next to each other so as to form a double dot, with a host of
special properties. Such properties can be probed if one can design the semicon-
ductor heterostructure containing the double dot so that experimenters can tune the
confinement potential of the double dot. To assist in the testing of heterostructures
before their actual construction, we have created a numerical simulation program
that calculates the electrostatic potential and charge density for a quantum double
dot housed in a semiconductor heterostructure. Relaxation techniques were used to
solve Poisson’s equation for the heterostructure. The Thomas-Fermi approximation
was used to calculate the electron density as a function of the spatially varying elec-
trostatic potential. Certain parameters of the simulation, such as the doping density
of the semiconductor material and the electron effective mass, were chosen after trial
and error such that the behavior of the simulation matched experimentally observ-
able values, including the electron density within and outside of the quantum double
dot region and the depletion voltage. Once the free parameters were chosen, the
simulation was used to examine various heterostructure geometries with gates that
could tune the confinement potential of the double dot. For example, we analyzed
a pincher gate geometry that could split the double dot into two isolated quantum
single dots by increasing the potential barrier in the channel connecting the two lobes
of the double dot. We discovered that such a tunable dot requires a pincher gate
that runs continuously across the bottom of the top gate. We also analyzed how two
middle gates, each positioned directly above one of the two lobes of the double dot,
can shape the relative sizes of the two connected dots.

Thesis Supervisor: Raymond C. Ashoori
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Chapter 1

Introduction

Recent advances in semiconductor fabrication technology, especially in terms of fabri-

cation resolution of small structures [1], have allowed for the construction of systems

of artificially confined electrons, often called quantum dots or “artificial atoms” [3, 12].

Physicists have been interested in studying the electronic structure of such systems,

which are so small that the Fermi wavelength of the confined electrons is comparable

to the spatial size of the confinement potential.

There exists a variety of quantum dots types. For example, one common way

of fabricating quantum dots is to create lateral confinement of electrons in a 2DEG

(2-dimensional electron gas, in which electrons are confined in the z direction due to

the band offsets at semiconductor interfaces) within a semiconductor heterostructure

(such as GaAs/GaAlAs) [16]. Additionally, heterostructures can be designed so as

to produce quantum dots in close proximity of one another, resulting in so-called

double dots or quantum dot molecules. For example, Reed et al. vertically coupled

two quantum dots together by placing a tunneling barrier between two 2DEG layers

[12]. Such vertically coupled dots were also analyzed theoretically by Palacios and

Hawrylak [6]. Coupling and tunneling effects were found to produce behavior not

observed in isolated quantum dots, including electron ground states that resemble

those in diatomic molecules [12]. Furthermore, larger arrays of coupled quantum dots

could be used to study solid-state physics, including energy gaps and energy bands,

on a lower energy scale than found in atomic crystals [8, 4].
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While vertically coupled quantum dots have been the focus of many experimental

and theoretical investigations [9], the goal of the program is to simulate relatively

large, laterally coupled quantum dots (i.e. quantum dots that exist within the same

2DEG layer of a heterostructure). Also, unlike other quantum dot heterostructures

made by etching metal gates with electron beam pattern lithography, the focus of our

simulation is a heterostructure with a pillar etched on the top of the structure, which

induces a confinement potential within a 2DEG layer. The former type of quantum

dot, pictured in figure 1-1, is primarily analyzed through transport experiments (also

known as gated transport spectroscopy), in which current is run through the dot

and electrons both enter and leave it [1]. The tunneling properties of double dots

constructed in this fashion are examined analytically by Matveev et al. in [5]. In the

latter type, which we are studying, we create a dot that is in equilibrium with its

surroundings and can be studied via capacitance spectroscopy.

Dot

Gate

Right
Contact

Left
Contact

Electrode

Figure 1-1: Diagram of quantum dot used in gated transport spectroscopy. Repro-
duced from a figure in [1].

In order to design experiments to explore quantum dots, one often resorts to

computer simulations to predict how the dots form in various geometries and under

numerous conditions. Thus, we have created a program to numerically calculate the

electrostatic potential and electron density within a semiconductor heterostructure

containing a quantum double dot. The electrostatic potential is determined by Pois-
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son’s equation, which is numerically solved through a relaxation method [15]. For

the simulation, Poisson’s equation is nonlinear due to the inclusion of the electron

density term ρe(U), which is a function of the electrostatic potential U . This relation

between electron density and electrostatic potential is derived from the Thomas-

Fermi approximation [13]. The approximation assumes that the electrons form a gas

of noninteracting fermions with T = 0 and constant chemical potential µ(~r) through-

out the heterostructure. Also, we assume that the electrostatic potential does not

vary appreciably over length scales equal to the Fermi wavelength. The restriction

that µ(~r) = εF (~r)− eU(~r) is constant for all ~r as well as the fact that the Fermi en-

ergy εF (~r) is proportional to ρ
2
3
e (where ρe is the electron density) imply a particular

relation between the electron density and the electrostatic potential U(~r).

After testing the simulation and choosing the proper values for the free parame-

ters (such as the electron effective mass) to help ensure that the simulation produced

results that matched a previously defined set of experimental observations, the pro-

gram was used to test out possible heterostructure geometries to determine if any

could allow experimenters to control the electrostatic potential in the channel con-

necting the two lobes of the quantum double dot and thus separate the double dot

into two single dots. We discovered that a pincher gate that ran continuously over

the region where the two dots intersected could produce a tunable lateral interaction.

Furthermore, we analyzed a geometry with two middle gates, each positioned on top

of one of the two lobes of the cap layer. We found that the two middle gates, by

applying unequal potentials to the two of them, could shrink the size of one of the

dots of the double dot. Therefore, the middle gates, combined with the pincher gate,

can tune the relative sizes of the two dots and experimentally analyze how the two

couple.
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Chapter 2

Laterally Coupled Vertical Double

Dot System

The double dot system of interest is created within a GaAs/AlGaAs semiconductor

heterostructure, with a pillar etched on top to produce the confinement potential

within the 2DEG layer (also referred to as the quantum well layer). As opposed

to the vertically coupled double dots (seen in figure 2-1) analyzed by Reed [7] (see

also the work by Tarucha in [9], our double dot is composed of two laterally coupled

quantum dots (seen in figure 2-2), both residing within the same quantum well layer

in the heterostructure. Vertical confinement of electrons (i.e. confinement of electrons

within the “plane” of the quantum well layer) is achieved by the band offsets between

GaAs and AlGaAs layers, which will be described in greater detail below. Lateral

confinement is provided by having short pillars etched on top of the heterostructure

into the face of the top metal gate. Because of these pillars (to which we also refer

as the cap layer), the region of the quantum well layer directly beneath the cap layer

is farther from the top metal gate than other regions are (the increase in distance

being equal to the height of the pillars). Thus, this region underneath the cap layer

feels less of the electrostatic influence of the top metal gate and has more favorable

electrostatic potential values for electrons, causing the electrons in the quantum well

layer to be corralled into this region.
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upper quantum well layer

lower quantum well layer

tunneling barrier

Lower Quantum Dot

Upper Quantum Dot

Double Quantum Dot
Vertically Coupled

Figure 2-1: Diagram of vertically coupled quantum double dot.

Blocking Barrier

Blocking or Tunneling Barrier

Side View

Top View

Left Dot Right Dot

Left Dot Right Dot

Double Quantum Dot
Laterally Coupled

Figure 2-2: Diagram of laterally coupled quantum double dot.

2.1 Vertical Confinement: Band Offsets

Vertical confinement of the electrons within the quantum well region is carried out

via band offsets between two different semiconductor layers (intrinsic GaAs for the

quantum well layer and AlGaAs or GaAs/AlGaAs for two adjacent blocking barrier

layers). Due to the periodic potential from a crystal lattice, semiconductor materials

have an energy gap between their valence band (the band of highest energy states

that are occupied by electrons) and their conduction band (the band of lowest energy

states that are unoccupied), with the Fermi level (which is closely approximated by

the chemical potential) located roughly half-way in between the two. Separated from

16



each other, the two different types of semiconductors have different Fermi levels.

When the two layers are placed adjacent to each other, electrons from the layer with

the higher Fermi level will jump to the lower energy states in the other layer. The

change in electron density will alter the two Fermi levels until they are equal, at

which point there is not enough of an energy difference for electrons to move from

one layer to another [13, 14]. See figure 2-3 (which contains a picture of the valence

and conduction bands for the two semiconductors for before and after they come into

contact) for this band bending as well as the charge accumulation near the interface.

The imbalance of charge, however, creates an electric field across the interface, leading

to a jump in the electrostatic potential at the interface between the two semiconductor

layers. This jump (pictured in figure 2-4) is called the band offset. For our particular

case, we use GaAs and AlGaAs, more specifically called AlxGa(1 − x)As, with x =

0.27. The AlGaAs material is produced by replacing some of the gallium atoms in

GaAs with aluminum atoms, thus changing the periodic lattice potential felt by the

electrons, leading to a shifted, wider band gap as compared to the band gap of GaAs.

Conduction 1

Valence 1

Conduction 2

Valence 2

Fermi Level 1

Fermi Level 2

Fermi Level

Conduction 1

Valence 1

Valence 2

Not in contact In Contact

Conduction 2- +

Figure 2-3: Diagram of valence and conduction bands of two different semiconductors,
both while not in contact and in contact with each other. Reproduced from Figure
17 of Chapter 19 in [13].
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Figure 2-4: Diagram of jump in electrostatic potential across an interface between
two different semiconductors. Excess negative and positive charges are located on
opposite sides of the interface. Adopted from Figure 13 of Chapter 19 in [13].

2.2 Geometry of the Semiconductor Heterostruc-

ture

The geometry for the semiconductor heterostructure containing the quantum dot

(pictured in figure 2-5) consists of a number of layers of different materials stacked on

top of one another, sandwiched between two metal electrode plates. The structure is

grown through molecular beam epitaxy, which produces high quality crystal layers.

In the experimental heterostructure, the base consists of an intrinsic GaAs substrate

with a layer of n+ GaAs conducting substrate. Above this layer is a thin spacer

layer, to prevent the diffusion of dopants into the quantum well. In the simulation,

these layers are modeled as a layer of insulator 10 nm thick on top of a bottom metal

gate (which has constant potential). On top of the insulator layer is a 80 nm thick

region of intrinsic GaAs semiconductor material. Above this layer is an 8 nm thick

layer of GaAs/AlGaAs superlattice tunnel barrier material (which is thin enough to

allow electrons to tunnel from the quantum well layer into the bottom gate), which

is modeled as a semiconductor but with a band offset between it and the intrinsic
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GaAs layer. On top of the tunnel barrier is a 18 nm thick layer of intrinsic GaAs.

This layer (also known as the quantum well layer) contains the quantum dot. Vertical

confinement is provided by the band offsets caused by the sandwiching of the intrinsic

GaAs in between the lower GaAs/AlGaAs superlattice tunnel barrier and an upper

AlGaAs semiconductor blocking barrier, which is thick enough to prevent tunneling

between the quantum well layer and the top gate. This 50 nm thick upper blocking

barrier rests on top of the quantum well layer. Within the upper blocking barrier is

a layer of AsSi delta doping material that is located 20 nm above the quantum well

region. In the simulation, this delta doping layer is modeled as a thin insulator layer

with constant, uniform positive charge density (about 1017 e per cm3).

0

AsSi delta doping layer

100 nm

200 nm

z axis

Semiconductor Heterostructure Geometry
(yz plane cross-section)

Top metal gate (with pincher gate and
middle gates)intrinsic GaAs

cap layer (cross section)30 nm

GaAs/AlGaAs superlattice tunnel barrier - 8 nm thick

quamtum well layer
intrinsic GaAs
18 nm thick

quantum dot region
(cross-section)

cap layer diameter: 500 nm

AlGaAs blocking barrier - 30 nm thick

AlGaAs blocking barrier - 20 nm thick

intrinsic GaAs - 80 nm thick

insulator - 10 nm thick

Bottom metal gate

Figure 2-5: Cross-section (yz plane) of semiconductor heterostructure.

On top of the upper blocking barrier is the top metal gate. This gate controls

the upper potential. A double cap region (which takes the shape of two parallel,
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partially intersecting pillars, each having a radius on order of 250 nm) is carved into

the bottom face of the top metal gate, with a depth of 30 nm. Within the cap layer is

intrinsic GaAs. A cross-section of the cap layer (illustrating its characteristic shape in

a given xy plane) can be seen in figure 2-6. Because of the cap layer, different points

in the quantum well layer have different distances from the top metal gate. The

regions in the quantum well layer that fall under the cap layer are farther away from

the top metal gate than those that do not fall directly under the cap layer. Thus,

the regions that are located directly under the cap layer feel less of the top metal

gate’s electron repelling effects and will therefore have higher electrostatic potential

(i.e. more attractive to negatively charged electrons) than regions that are not under

the cap layer. Ultimately, the double-dot shaped cap layer will produce a double-dot

shaped blob of charge within the quantum well due to the more favorable electrostatic

potential there.

Cap Radius: 250 nm

Center to Center
Separation: 400 nm

Cross-Section (xy plane slice)
of Double Cap region in

Top Metal Gate

Intrinsic GaAs

beyond cap:
top gate

Figure 2-6: Cross-section (xy plane) of cap layer.

2.3 Double Dot Shape and Coupling Strength

Because the two pillars intersect partially with each other to form a double pillar

with two lobes, the electrons are confined into a double dot shape, with each of the

two lobes directly under one of the two pillars. Ideally, we would like to find a way

to separate the double dot into two distinct single quantum dots and also control the

20



strength of the coupling between the two dots by altering the electrostatic potential

in the region between the two single dots. This in turn will aid in experiments using

single electron capacitance spectroscopy to analyze localized and delocalized states

of electrons in the double dot (see [18]). It is expected that under certain conditions,

the electron states can become delocalized and form symmetric and anti-symmetric

states that span across both dots. The coupling strength of the two double dots,

which depends on how much the two dots intersect as well as the strength of the

electrostatic potential in the region of intersection, determines the energy splitting

of the symmetric and anti-symmetric states [9]. The strength of the coupling or

separation of the two dots can be potentially achieved by placing additional metal

gates in and around the pillars. By applying a potential bias between these additional

metal electrodes and the top gate, one can alter the electrostatic potential within the

quantum well region and change the confinement potential of the quantum dot. As

we shall see, only the areas in the quantum well directly beneath the relevant gates

significantly feel the electrostatic influence of these gates. Thus, in order to control

the potential in the area joining the two lobes of the double dot, one must employ

a pincher gate which runs along the top gate and the top of the pillars, so as to be

directly above the region of the intersection of the two pillars.

2.4 Pincher Gate Geometry

To allow for greater control of the confinement potential and electron density within

the double dot, additional gates are located on the undersurface of the top metal gate

(see figure 2-7). These gates are metal electrodes that can have different potentials

than the top metal gate. The first additional gate is the 200 nm wide pincher gate,

which runs across the center of the underside of the top metal gate as well as the top

part of the cap layer. Because the pincher gate lies directly above the overlap region

of the two intersecting quantum dots, applying a negative (unfavorable for electrons)

electrostatic potential to the pincher gate will drive out the electron density in the

overlap region.
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The other two additional gates are called the middle gates. They are located on

top of the cap layer, one for each lobe of the cap layer. The potentials of these middle

gates can be adjusted so as to vary the depths of the confinement potential for the

two conjoined quantum dots, separately. As it will be described below, varying the

potential of one middle gate only affects the potential and electron density for the

quantum dot directly beneath that middle gate; the other quantum dot is mostly

unaffected.

Cross-Section (xy plane slice)
of Double Cap region in

Top Metal Gate

Pincher Gate
("painted" on upper surface of
top metal gate)

Top Metal Gate

Middle
Gate 1

Middle
Gate 2

200 nm

Figure 2-7: Diagram of upper gates.
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Chapter 3

Technical Details and Physics of

the Simulation

Within this chapter, we will discus the basic flow of the program, as well as describing

the physics behind the simulation. For example, we will describe the mathematics and

physics behind the technique of relaxation as well as the Thomas-Fermi approximation

and band offsets, in addition to describing how they are implemented within the

simulation. Furthermore, we will show some examples of the output of the simulation

as well note how the size of the quantum dot changes with respect to different potential

biases applied to the top gate.

A simple flow chart depicting the path of the simulation is shown in figure 3-1.

First, our simulation creates the geometry describing the semiconductor structure

based on a collection of parameter variables. Each point in a three-dimensional is

assigned spatial coordinates and a material type, which defines the point’s physical

properties. Then, the program proceeds to relax each point in the grid by updating

the electrostatic potential at each point based on the charge at the point and the

electrostatic potential of the surrounding points. The simulation iterates through the

relaxation loop until the algorithm converges to a solution and the calculated error

is below a certain threshold value. Once relaxation is completed, the electrostatic

potential and the parameters used to define the semiconductor structure are written

to various files in a newly created directory.
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Calculate Total

End

Write output files

value?
less than threshold

Is total error

Error

For each grid point,
relax point.

Start Relaxation
Loop

Initialize geometry

Start

No

Yes

Figure 3-1: Flow chart of the simulation.

3.1 Initialization

The basic geometry of the semiconductor structure that we wish to investigate com-

prises of a series of different GaAs and AlGaAs layers sandwiched between two metal

gates. The bottom gate is modeled as just a slab of metal while the top gate contains

an indentation that is shaped like two intersecting cylinders whose bases are parallel

to the face of the bottom gate. This hollowed out indentation is a double cap con-

taining semiconductor material and breaks the symmetry of the structure such as to

create a double potential well within the 2D electron gas layer, thus forming a double

quantum dot.
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The simulation describes this geometry using a three-dimensional grid of points,

each having a particular material type. Materials include semiconductor, dielectric,

and metal. Each material type has an associated electrical permittivity and different

properties during relaxation (for example, metal points are not relaxed because they

are at constant electrostatic potential). Each point is also assigned spatial coordinates

and material type is assigned based on the location of the grid points.

3.2 Relaxation

After the grid of points are properly defined, the program proceeds to go through

a Gauss-Seidel relaxation algorithm with successive overrelaxation[15], which comes

from treating Poisson’s Equation on a grid of discrete points and relating the electro-

static potential at one grid point to the potential of its nearest neighbors.

3.2.1 Using Poisson’s Equation

According to Poisson’s equation, −∇· ε∇U(x) = ρ(x), where U(x) is the electrostatic

potential, ρ(x) is the spatially varying charge density, and ε is the spatially varying

dielectric value. By choosing a small volume V centered on a point in space and

integrating over the volume, we get:

∫

V

−∇ · ε∇U(x)dV =

∫

V

ρ(x)dV
∫

S

−ε∇U(x) · d~S = Qenclosed

∫

s

ε ~E(x) · d~S = Qenclosed (3.1)

where ~E(x) is the electric field. Thus, the amount of charge within the volume,

Qenclosed is equal to the sum of the electric flux across the surface S surrounding the

volume. Since the simulation uses Cartesian coordinates, one can imagine splitting

up space into a series of small cubes, each one centered on a particular grid point,

labeled with the indices i, j, and k. The charge within each cube is simply equal to
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the volume of the cube times the charge density ρ at that point (ρ is either equal

to zero (for dielectrics and metals) or is a function of the electrostatic potential at

the point (for semiconductors; the details for this function is described in a section

below)). The electric flux, scaled according to the relative permittivity εrel = ε/ε0 of

each point and the surrounding points, across the surface of the cube is equal to the

sum of the fluxes across each face of the cube. Each face of the cube lies between the

central grid point and one of the six adjacent grid points (so each cube face has a

corresponding adjacent grid point). See figure 3-2 for a simple drawing of this setup.

U_2

dr

U_1

U_3

U_4
U_central

U_1

U_3

U_4
U_central

U_2

U_5

U_6

phi_2phi_4

phi_3

phi_1

Side View 3D View

Figure 3-2: Central and adjacent grid points, plus cubic cell.

It is assumed that the relative permittivity across a particular cube face is the

average of the relative permittivity of the central grid point and the relative permit-

tivity of the corresponding adjacent grid point. Furthermore, we also assume that

the relative permittivity for AlGaAs and GaAs are equal, with the relative permit-

tivity of GaAs equal to 13.13 [13]. The electric field normal to each face is equal

to (Ucentral − Uadjacent)/dr, where Uadjacent is the electrostatic potential at the corre-
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sponding adjacent grid point, Ucentral is the electrostatic potential at the central grid

point, and dr is the distance separating the two grid points. The electric flux across

each face is equal to the normal electric field times the area of the cube face times

εrel.

By setting the sum of the fluxes (which is a function of the electrostatic potentials

of the central grid point and the adjacent grid points) equal to the charge contained

within the cube, one can see that one can rearrange the resulting equation to describe

the electrostatic potential of the central grid point as a function of the electrostatic

potential at the adjacent grid points and the charge density at the central grid point.

Let Ucentral be the electrostatic potential at the central grid point and U1 through

U6 are the electrostatic potentials of the six adjacent grid points. In this case, the

electric flux through the ith face of a cube centered on the central grid point is:

φi = dA
Ucentral − Ui

dr
, (3.2)

where dA is the area of the face of the cube. This gives us:

∑
i

εiφi = Qenclosed/ε0

∑
i

εidA
Ucentral − Ui

dr
= Qenclosed/ε0 (3.3)

where εi is the relative permittivity at the ith face of the cube. One can use equation

3.3 to solve for Ucentral in terms of Ui:

Ucentral =
Qenclosed/ε0 +

∑ εidAUi

dr∑ εidA

dr

(3.4)

The essence of the relaxation method is to start with an initial guess for the elec-

trostatic potential and then iterate through each point repeatedly, each time setting

the electrostatic potential at that point equal to value described by equation 3.4 (this

is referred to as relaxing each point) [15]. One continues to relax each point until
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the algorithm converges to a stable answer. The simulation determines when this

convergence has taken place by calculating the sum of the error at each point. The

error at a given point is equal to (Qenclosed −
∑

φi)
2, where Qenclosed is the charge

present in the small cube surrounding the point and
∑

φi is the sum of the fluxes

through the surface of the cube. That is, the error at a point is equal to how much

the electrostatic potential at the point (and at the surrounding points) deviate from

the values expected by Poisson’s equation, squared. The simulation stops relaxing

points once the total error has decreased below a given threshold value. An example

plot of the total error for all grid points (χ2) versus relaxation loop iteration number

(with each relaxation loop step comprising of relaxing all of the grid points once) can

be seen in figure 3-3. This data comes from a fully three-dimensional geometry in

which one cannot use symmetry to reduce the number of dimensions of the geometry.

It is possible to use a geometry with translational symmetry in one direction (for

example, along the y-axis) to reduce the simulation to a two-dimensional case, which

can be performed much more quickly and enable fast tests of basic properties of the

simulation. Such two-dimensional simulations have χ2 versus relaxation loop iteration

number curves that are very similar to those from three-dimensional cases. However,

the number of operations required in each relaxation loop iteration is proportional

to the number of grid points in the simulation’s geometry. The three-dimensional

simulations have far more grid points than the two-dimensional simulations have, so

each of the relaxation iterations for the three-dimensional simulations takes a propor-

tionally longer time to execute than the relaxation iterations for the two-dimensional

simulations. This leads to the speed improvement of two-dimensional simulations

over three-dimensional simulations.

3.2.2 Overrelaxation

As a way to speed up the algorithm and prevent nonlinear instabilities, successive

overrelaxation/underrelaxation [15] is performed in the simulation. When relaxing

a given point, instead of setting its electrostatic potential equal to the value deter-

mined by the rearrangement of Poisson’s equation via a finite difference method, one
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Figure 3-3: Error plotted versus relaxation loop iteration number for a fully three-
dimensional geometry.

determines the calculated update value (the difference between the new electrostatic

potential and the old one) and then instead update the electrostatic potential by

an amount equal to the originally calculated update value times a relaxation factor,

which varies between 0 and 2. In other words, when relaxing a given point during

a particular relaxation cycle, instead of setting the electrostatic potential equal to

Ucentral (the new value for the electrostatic potential whose value is defined by equa-

tion 3.4), the potential is set to Uprevious + δ ∗ (Ucentral − Uprevious), where Uprevious is

the value of the electrostatic potential at the given point from the previous update

and δ is the relaxation factor.

When the relaxation factor is greater than 1, the program actually overrelaxes,

but this can provide a speed-up by causing the electrostatic potential to reach the

final solution more quickly. However, this overrelaxation can cause problems due to

the nonlinear nature of the relaxation, caused by the presence of charge density in

semiconductor points. The program could possibly continually overshoot a stable

solution by overrelaxing points. In this case, the update can be dampened with a
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relaxation factor of less than 1. In practice, this helps to prevent instabilities. When

the algorithm starts out, it overrelaxes points with a relaxation factor equal to 2.

Whenever the error starts increasing too much, the program lowers the relaxation

factor.

3.3 Semiconductor Charge Density and Electro-

static Potential

The charge density at a semiconductor grid point is calculated using a Thomas-

Fermi approximation described in [13]. Let the chemical potential (at T ≈ 0) be

µ ≈ ε0
F = h̄2

2m∗
e
(3π2n0)

2/3
, where m∗

e is the effective mass of the electron and n0 is the

electron number density at U = 0. The chemical potential is constant throughout the

semiconductor structure (if it were not constant, electrons at locations with higher

µ would move about to locations with lower µ until equilibrium was achieved and µ

was constant). At areas where U 6= 0, we have:

µ = εF (~r)− eU(~r) ≈ h̄2

2m∗
e

(
3π2n(~r)

)2/3 − eU(~r) ≈ h̄2

2m∗
e

(
3π2n0

)2/3
(3.5)

Using ρ(~r) = e∗ (n0−n(~r)), ρ0 = e∗n0, and b =
2m∗

ee
5/3

h̄2
(
3π2

)2/3 , one can solve the above

equation to get an expression for the charge density:

ρ(~r) =





ρ0 −
(
ρ

2/3
0 + bU(~r)

)3/2

for U(~r) > −ρ
2/3
0
b

= Udepl

ρ0 for U(~r) ≤ Udepl

(3.6)

In this case, ρ0 is the charge density provided by doping. The effective mass m∗
e is

the effective mass of electrons in the conduction band for the semiconductor. Mod-

ifications to this equation can be used in the case of 2D systems and systems with

applied magnetic fields; one simply has to calculate the new density of states under

each system and calculate the Fermi energy based on the electron density. A plot of

electron density as a function of electrostatic potential can be seen in figure 3-4, with
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reduced mass = 0.001me and ρ0 = 1.55 ∗ 1017e per cm3.
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Figure 3-4: Electron density as a function of electrostatic potential (with reduced
mass = 0.001me and ρ0 = 1.55 ∗ 1017e per cm3).

3.4 Band Offsets

When two different semiconductor materials are adjacent to each other, a band offset

at the junction plane is created as electrons transfer from one material to the other so

that both materials have the same chemical potential. A band offset is a discontinuous

jump in the electrostatic potential which originates from the electric field of the

displaced electrons [13]. These sudden drops or rises in electrostatic potential are

used to create a confinement potential for electrons, thus trapping them within a

two-dimensional electron gas (2DEG).
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Band offsets are implemented in the simulation by enforcing certain boundary

conditions along the junction plane. The electrostatic potential of the grid points

just above the junction plane is set to be equal to the electrostatic potential of the

grid points just below the junction plane plus a fixed amount (i.e. the band offset).

In other words,

Uabove = Ubelow + ∆ (3.7)
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Figure 3-5: Sample plot of two-dimensional lateral confinement potential on a plane
within the quantum well layer.

where Uabove is the electrostatic potential just above the junction, Ubelow is the

electrostatic potential just below the junction, and ∆ is the value for the band offset

(in simulation, we used values of magnitude 0.26 V) [14]. See figure 3-5 for a diagram

of this jump in the electrostatic potential for a continuous case. When relaxing the

grid points just below the junction plane, the band offset value is subtracted from the

electrostatic potential for the adjacent grid points that are just above the junction

plane. A similar adjustment was used for relaxing the grid points just above the

junction plane, but instead the band offset value was added to (instead of subtracted

from) the electrostatic potential for the adjacent grid points that are just below the

junction plane.
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3.5 Reporting Output

After relaxation is over, the simulation program makes a new directory whose name is

based on the date and time at which the program started. In this directory, simulation

creates the output files containing the parameters of the simulation (including the size

and spacing of the grid of points, the various dimensions of the geometry, the locations

of band offsets, etc) and a series of files containing the electrostatic potential solution.

The grid is separated into several planes of points, each plane parallel to the xy plane.

An output file is created for each plane (indexed according to the z value of the plane)

and holds the electrostatic potential within that plane in matrix format, with each

line describing a row of points.

3.5.1 Sample Output
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Figure 3-6: Sample plot of two-dimensional lateral confinement potential on a plane
within the quantum well layer.

Figures 3-6, 3-7, and 3-8 contain sample plots of the output of the simulation for

the standard double dot geometry and zero applied external potential. Figure 3-6

is a three-dimensional plot of the two-dimensional lateral confinement potential on
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Figure 3-7: Sample contour plot of two-dimensional electron density within the quan-
tum well layer. Electron density is in units of e per nm2.

a plane within the quantum well layer. The shape of this potential demonstrates

how the electrons in the quantum well are laterally confined. Figure 3-7 is a contour

plot of the two-dimensional electron density within the quantum well layer; its shape

illustrates how electrons distribute themselves in response to the two-dimensional

confinement potential. Finally, figure 3-8 is a plot of the potential energy (equal

to −|e| times the electrostatic potential) versus Z coordinate along a line that goes

through the center of geometry, from the bottom metal gate (at z = 0) to the top

metal gate (at z = 200 nm). In this plot, the band structure and band offsets are

clearly seen. The quantum well layer resides near the z = 98 nm to z = 116 nm

region, in between the lower blocking barrier layer (roughly z = 90 nm to z = 98 nm)

and the upper blocking barrier layer (roughly z = 118 nm to z = 160 nm).

Size of Single Quantum Dot

As a side note, we also examined how the size of a single quantum dot varied with

the application of an external potential bias to the top gate. We changed the double

cap to a single pillar shape and ran the simulation with different negative potential
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Figure 3-8: Potential energy plotted versus the Z coordinate (along the center of the
geometry). The bottom metal gate is located at z = 0 while the top metal gate is
located at z = 200 nm.

biases applied to the top gate, which slowly depleted electrons in the single dot. We

recorded the distribution of electron density in the quantum well layer as well as

the confinement potential for each external potential bias value. See figure 3-9 for

the plots of the confinement potential and figure 3-10 for the plots of the electron

density. Figure 3-11 has similar plots of quantum well electron density for different

potential values, but shows plots for four different cap layer radii: 150 nm, 250 nm,

350 nm, and 450 nm. The electron density plots illustrate how the electron density

within the quantum dot decreases as one increasing the repelling top gate potential

bias, but the radius of the dot does not change significantly, particularly for larger cap

radius values. Furthermore, while the confinement potential far from the quantum dot

region changes in response to the different top gate potential biases, the confinement

potential at the center of the dot responds much less drastically to changes in the top

gate potential. One possible explanation for this is that the confinement potential

within the dot is mostly determined by the potential at the top of the etched pillar,

where the top gate meets the cap layer. However, because the top gate is farther from

the quantum well layer in the regions of the double dot (which are directly below the
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etched pillar) than it is for the region beyond the double dot, where the top gate

is closer to the quantum well layer, the roughly 1/r dependence of the electrostatic

potential decreases the magnitude of the changes in the quantum dot potential in

response to changes to the top gate potential. Furthermore, nonlinear effects caused

by the presence of the semiconductor material in the cap layer could also minimize

the effect of changes of the top gate potential on the electrostatic potential in the

quantum dot region of the quantum well layer.
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Figure 3-9: Confinement potential plotted versus the X coordinate within the quan-
tum well region, for various potential biases applied to the top gate. The listed
potential values are equal to the absolute value of the (electron repulsing) top gate
potential bias.
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Figure 3-10: Electron density plotted versus the X coordinate within the quantum
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Figure 3-11: Electron density versus X coordinate plots for single dots of various
cap layer radii. For each radius, the electron density is plotted for a set of different
voltages applied to the top gate.
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Chapter 4

Testing of Parameters

Although in theory some of the parameters of the simulation can be determined

a priori (such as the effective mass of the electron within the semiconductor and

the doping density in the semiconductor layers), the various approximations that

were made encouraged tweaking the values of these parameters until the simulation

produced results that matched that seen in experiments. Once the simulation behaves

properly for a pre-defined set of conditions, one can then explore other geometries

to anticipate the properties of other quantum dots that have yet to be examined

experimentally.

The primary measurable responses of the simulation on which we focused were the

depletion voltage (Vdepl, the value of the top gate potential at which the quantum dot

region is completely depleted of electron density), the electron density in the center

of the quantum dot when the top gate is at zero potential (ρdot), and the electron

density in the quantum well layer far from the quantum dot region (ρfar). The main

parameters that we adjusted were the effective mass of the electron (m∗
e), the delta

doping density in the AsSi doping layer (ρd), and the doping density in the intrinsic

GaAs (ρ0). The first and third of these parameters are key features of the electron

density as a function of electrostatic potential, ρ(U). These adjustable parameters

were altered until the response variables matched experimental values: Vdepl ≈ 0.5 V

[18], ρdot ≈ 10−3 − 10−2 electrons per nm2 [17], and ρfar ≈ 0 [18]. After much trial

and error during which we tested several combinations and ranges of parameters,
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we found that the best set of parameters that produced these response values were

ρd = ρ0 = 1.55 × 1017 electrons per cm3 and m∗
e = 0.001me. Once these values were

found, we were ready to move on to the testing of sample heterostructure geometries,

including the pincher gate geometry.
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Figure 4-1: Electron density far from the quantum dot region versus doping density
ρ0.
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Figure 4-2: Electron density within the quantum dot region versus doping density ρ0.

To get a feel of how we chose the values for the adjustable parameters, figures

4-1, 4-2, and 4-3 contain plots of data from some of the simulations that were run

in order to test values for doping density ρ0 and effective mass m∗
e. Figure 4-1 is

a plot of quantum well layer electron density far from the quantum dot region (ρ0)

versus doping density ρ0 (keeping all other parameters constant). It demonstrates
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Figure 4-3: Electron density within the quantum dot region versus electron effective
mass.

the appropriate range of values for ρ0 for which ρfar = 0. As expected, decreasing

the amount of free electrons in the system decreases ρfar in a roughly linear fashion,

until it reaches the minimum value of 0. Figure 4-2 plots the electron density within

the dot (ρdot) versus ρ0. Like the case for ρfar, increasing ρ0 causes a increase in

ρdot. There is thus a tradeoff in adjusting ρ0 between keeping ρfar close to zero while

keeping ρdot sufficiently large. Lastly, figure 4-3 shows the relation between ρdot and

the effective mass of the electron. Appropriate values of ρdot results from making the

effective mass near the reasonably small value of 0.001.
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Chapter 5

Pincher Gate and Middle Gate

Simulations: Separating the

Double Dot

The simulation was first used to investigate double dot geometries to determine which

could, after applying the appropriate external voltages to the pincher gates and middle

gates, separate the double dot electron density into two distinct blobs of charge within

the 2DEG layer that partially overlap with each other. A geometry involving side

gates, which were a pair of metal electrodes that approached but did not overlap with

the double pillar, was initially tried, but we discovered that the side gates had limited

influence on the lateral interaction because the side gates were situated too far from

the region where the two dots overlapped. Thus, the side gate geometry was replaced

by the pincher gate geometry, which could effectively manipulate the electrostatic

potential and electron density in the overlap region of the double dot.

5.1 Side Gate Geometry

The first geometry that was tested involved two side gates, which were two separate

electrodes located on the underside of the top metal gate near the overlap region of

the cap region, but not actually extending into the cap region. See figure 5-1 for a
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Figure 5-1: Diagram of side gates.

diagram of the setup for the side gates. Theoretically, if one were to apply a negative

electrostatic potential to the side gates, the unfavorable potential would drive out

electrons in the overlap region of the double quantum dot in the quantum well region

by raising the potential energy of electrons residing there. The double quantum dot

would thus become separated into two unconnected single dots and theoretically one

could tune the lateral interaction of the two dots by controlling the potential applied

to the side gates.

5.2 Pincher Gate Geometry

However, test simulations showed that due to the large distance between the overlap

region of the double quantum dot and the tips of the side gates (on order of 100 nm),

the side gates had relatively little influence on the electron density in the quantum

dot. Separation of the double dot could only be achieved with side gate electrostatic

potentials of over 50 V (a contour plot of the electron density within the quantum well

layer for this geometry can be seen in figure 5-2). However, it is expected that this
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Figure 5-2: Electron density contour plot in quantum well layer with original side
gate-only geometry (with side gate potential = 50 V).

value is unacceptably high due to avalanche breakdown, in which the intense electric

fields caused by the high potential bias accelerates electrons so much that they lead

to the creation of electron-hole pairs and a large current between the side gates and

the surrounding materials [19].

Therefore, the side gate geometry was discarded in favor of a pincher gate setup,

as described in section 2.2. Unlike the side gates, the pincher gate extends over the

overlap region of the quantum double dot, while remaining on the underside of the

top metal gate. Simulations indicated that the pincher gate could separate the double

dot with applied electrostatic potentials of 0.3 to 0.5 V below that of the top metal

gate. Figure 5-3 shows a contour plot of the electron density within the quantum well

layer with the pincher gate (with a voltage that is 0.3 V lower than the top metal

gate), demonstrating the separation of the double quantum dot into two separate

dots. Figure 5-4 shows various contour plots for electron density within the quantum

well layer after applying different pincher gate potential bias values, illustrating how

one can use the pincher gate to tune the coupling strength between the two lobes
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Figure 5-3: Electron density contour plot in quantum well layer with pincher gate
setup.

of the double quantum dots or even separate them completely. Some amount of

separation of the two lobes is achieved at a pincher gate potential bias of 0.1 V. At

around 0.4 V to 0.5 V, the two lobes become completely separate. One can further

raise the potential bias of the pincher gate to increase the barrier between the two

dots even more so and control the lateral interaction.

5.2.1 Middle Gates

The purpose of the addition of the middle gates along with the pincher gate is to

duplicate the function of the top gate. They work to both deplete electron density

within the quantum well region and to create the confinement potential for the double

dot as well as to act as electrodes for capacitance measurements. Furthermore, one can

apply a different potential bias value to one of the middle gates and measure its effects

on the overall electron density and the electron density within the dot underneath

the other middle gate. For example, figure 5-5 shows plots of quantum well electron

density ρ versus x (along a line that cuts through the middle of the two quantum dots)
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(d) Pincher Gate bias = 0.3 V
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Figure 5-4: Zoom-in of contour plots for quantum well electron density for various
values of pincher gate voltage bias.
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for different values of potential bias in the first middle gate. A constant potential

bias is also applied to the pincher gate, slightly separating the two dots. One can see

the electron density in the left quantum dot decrease as one increases the potential

bias to the first middle gate, which depletes the electron density from the quantum

dot directly beneath it while having little effect on the other quantum dot. Contour

plots of the corresponding electron density within the quantum well region can be

seen in figure 5-6.

Variable Dot Size and other Tunable Features

Ultimately, one can use the pincher gates and middle gates to tune the confinement

potential of the double dot system. From the electron density plots for variable middle

gate potentials, one can see that by partially depleting the electrons from one of the

two dots, the middle gates can effectively shrink the size of one dot while the other

dot remains mainly unaffected. Thus, one can tune the relative sizes of the two dots

and examine how a smaller dot couples with a large dot. It is expected that as one

reduces the size of one dot, the energy spacings of states for electrons confined to

that dot will increase. By altering the potential bias for the other middle gate, one

can also raise and lower the more closely spaced energy levels of the larger dot. It is

expected that interesting phenomena will occur when the energy levels line up, such as

resonance tunneling of an electron from one dot to another. This resonance tunneling

was examined by van der Vaart et al. and Waugh et al. via transport experiments

using double and triple quantum dots made from lithographic etching[10, 11]. This

matching of energy levels is illustrated in figure 5-7. Furthermore, a potential applied

to the middle gate is expected to distort the associated dot’s confinement potential,

breaking it’s quasi-cylindrical symmetry.
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Figure 5-6: Zoom-in of contour plots for quantum well electron density for various
values of first middle gate potential bias Umiddlegate1.
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Chapter 6

Conclusion

The simulation was able to model the behavior of a double quantum dot geometry

via its relaxation algorithm and Thomas-Fermi approximation. It also allowed for the

testing of various geometries that would conceivably allow experimenters to control

the shape and properties of the quantum double dot, such as a pincher gate geometry

that could separate the double dot into two single quantum dots or manipulate the

coupling strength between the two lobes of the double dot. The simulation demon-

strated the pincher gate’s ability to modify the lateral interaction of the two dots.

Also, the simulation showed how the middle gates, in combination with the pincher

gate, could alter the relative sizes of the two dots and allow for experiments that

analyzed the effects of coupling a smaller quantum dot with a larger dot. With this

combination of upper gates, one can tune various properties of the confinement po-

tential of the dot, allowing for a host of experiments on quantum dots and confined

electron systems.

The double dot geometry that was used to test the simulation is only one pos-

sible geometry that can be examined by the simulation. Other geometries could be

tested by the program, thus allowing for the exploration of other ways to control the

properties of the double quantum dot and analyze its rich physics. For example, one

could use a modified heterostructure and analyze vertically coupled quantum dots.

Various improvements could still be made to the simulation, including replacing

some of the simplifying assumptions that we have made about the physics of the
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electron system and heterostructure with more sophisticated models. The relaxation

algorithm could be optimized instead of merely relying on a simple over-relaxation

scheme. Fully three-dimensional simulations can take minutes or hours to run, so

an acceleration of the program would be useful. For example, one might implement

multigrid relaxation techniques in the simulation [15]. Furthermore, the Thomas-

Fermi approximation could be expanded upon to include electron-electron interac-

tions. Presumably, the electrons in the two separate quantum dots could couple

with each other via the Coulombic interaction, in addition to quantum mechanical

coupling. Additionally, a self-consistent Poisson-Schrödinger solver might also be

incorporated into a variant of the simulation. Such an improvement would help in-

corporate more quantum effects into the simulation without depending so much on

the Thomas-Fermi approximation, whose accuracy breaks down if the electrostatic

potential varies drastically over length scales equal to the Fermi wavelength. Finally,

one could replace the implicit assumption that the ionized donor atoms present in the

semiconductor materials are evenly distributed with a more complicated distribution

that is a function of spatial coordinates, gate voltage, and electron density within the

quantum dot [2].
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