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Observation of Quantum Fluctuations of Charge on a Quantum Dot
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We have incorporated an aluminum single electron transistor directly into the defining gate struct
of a semiconductor quantum dot, permitting precise measurement of the dot charge. Voltage bia
a gate draws charge from a reservoir into the dot through a single point contact. The dot cha
increases continuously for large point contact conductance and in single electron steps with
contact nearly closed, and we measure the corresponding capacitance line shapes. The line sh
are not typical of lifetime or thermal broadening but fit well to predictions of perturbation theory
[S0031-9007(98)08102-2]
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An isolated puddle of electrons (a quantum dot) holds
discrete and measurable number of electrons. This rema
the case even if the puddle is weakly coupled to an elect
reservoir. The energetics of charging of quantum do
can be probed by addition spectroscopy, i.e., by prec
measurement of the energy needed to add or remove
electron [1]. Quantum mechanical tunneling between t
dot and the reservoir gives rise to line broadening in t
charging spectra. For many systems, the coupling o
single state to a continuum of states produces a “lifetim
broadening” of the state energy. For instance, spectra
excited states in atoms display a characteristic Lorentz
line shape broadening arising as a result of coupling to
continuum of electromagnetic modes. In quantum do
electrons may enter or depart from states within the dot
means of tunneling to a continuum of states within one
more electron reservoirs. Unlike the line shapes in optic
spectra of atoms, the line shape of quantum dot lev
originates essentially in a many-body interaction betwe
electrons in the dot and in the reservoirs.

As the tunnel barrier conductance,G, between the
quantum dot and the macroscopic leads is increased ab
2e2yh, quantum charge fluctuations between the dot a
the lead destroy charge quantization on the dot [2].
thorough physical description of this effect has on
recently been proposed [3–5].

Measuring the charge or the capacitance of a dot
a single-terminal geometry provides the most direct i
formation about charge fluctuations and the effect of t
dot-environment interaction on the charging states of t
dot. However, transport experiments have been the firs
address the issue of dot-environment coupling. Foxm
et al. [6] examined the line shape of conductance pea
with increasing coupling of the dot to the leads and fou
good agreement with Lorentzian broadening. To analy
the charging line shapes in the dot for a broad range
coupling strengths, conductance measurements are po
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suited, being complicated by interactions between conta
in a multiterminal geometry [7].

Previous experiments have addressed the issue
charging line shapes. Researchers employed a semic
ductor electrometer [8] to observe the effect of charg
fluctuations. They modeled their results by a reduction
the charging energy with increasing coupling. In anothe
experiment [9], effects of electron tunneling betwee
double dots were analyzed with a similar formalism a
we use in our line shape investigation [10].

We have developed an experiment that probes the c
pacitance line shape of a quantum dot with unpreceden
sensitivity. The line shapes deviate substantially from
previously employed fitting forms [6,8] and are best de
scribed for all coupling strengths by the theory develope
recently by Matveev [3–5].

We measure the capacitance line shapes of a quant
dot with only one contact to a charge reservoir. The qua
tum dot is electrostatically defined in a two-dimensiona
electron gas (2DEG) of a AlGaAsyGaAs heterostructure.
The 2DEG is about 1200 Å below the surface with a ca
rier concentration of1 3 1011 cm22. Measurements were
performed on six different samples, each yielding ver
similar results, and here we present detailed data from o
of them. A micrograph of the structure is shown in Fig. 1a
The estimated area of the quantum dot is about0.5 mm2,
which corresponds to an energy level spacing of7 meV.
We measured the average charging energy of the dot to
U ­ e2y2CS ­ 0.23 meV from temperature dependence
of the capacitance peaks for high tunneling barriers. He
CS ­ 348 aF (aF­ 10218 F) is the total capacitance of
the quantum dot.

In our experiment, a single-electron transistor (SET
detects charge on the quantum dot with extremely hig
sensitivity. The metal SET is fabricated [11] with
Al -Al 2O3-Al tunnel junctions [12] and incorporated
directly into one of the leads defining the dot.
© 1998 The American Physical Society 161
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FIG. 1. (a) Micrograph of measurement setup. The leads a
made of aluminum by shadow evaporation. The area of t
quantum dot is approximately0.5 mm2. (b) Schematic of
some of the capacitances in the measurement. (c) Exam
of drain-source current-voltage characteristics of a singl
electron transistor at a refrigerator temperature of 50 mK show
for three values of gate voltageCgsVg ­ eNSET ­ 0, 0.25
and 0.5 electrons. The arrow shows the drain voltage b
for optimal gain. (d) Dependence of the SET current wit
transparent quantum dot tunnel barriers on gate voltage
different drain-source voltage biases. Maximum peak-to-valle
modulation amplitude is at SETVds ­ Ecye.

Figure 1c shows the drain-source current-voltage r
lationship of the SET. It changes cyclically with the
charge induced on the central island of the SET. Fi
ure 1d displays the dependence of the current on the S
central island charge. For optimal charge sensitivity
the SET, we set the drain-source voltage at the onset
conduction for the maximum Coulomb blockade cond
tion [13] (arrow in Fig. 1c), achieving a sensitivity of
1.2 3 1023ey

p
Hz to the quantum dot charge.

Through application of a dc voltageVg to the lead
marked “gate” in Fig. 1a, charge can be drawn onto the d
as eN ­ CgdVg, whereCgd is the gate-dot capacitance
However, for zero temperature and for high tunnelin
barriers separating the dot from the leads, the charge
the quantum dot is quantized and can only change fromn
to n 1 1 around points in gate voltage, whereN ­ sn 1

0.5d. The measured capacitance isCmeas ­ e≠ny≠Vg,
wheren is the average number of electrons on the dot.

The capacitance line shape is measured by applyi
a small ac excitation (40 mV rms, 1 kHz) to the gate.
This signal modulates the charge on the quantum d
by an amount that is a function ofN and the coupling
strength. The small ac modulation of the quantum d
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charge induces ac charge on the SET central isla
resulting in a current through the SET at the excitatio
frequency. Examples of the measured SET response
Vg is swept are shown in Fig. 2a for three differen
tunnel coupling strengths. The upper trace is obtain
for G ­ 1.65e2yh, wheren deviates only slightly from
N and the electrostatic potentials in the dot and the lea
are nearly equal. A prominent feature of this curve is a
oscillation with a period of 94 mV. This period arise
due to an addition of one electron to the SET centr
island through a direct capacitanceCgs ­ 1.7 aF to the
gate, modulating the gain of the SET.

The bottom trace in Fig. 2a is obtained fo
G ­ 0.05e2yh. Here, the charge on the dot is wel
quantized and can change only in close proximity
points whereN ­ sn 1 0.5d. These points correspond to
the sharp peaks in the trace, spaced with a mean perio
6.3 mV, yielding a gate-dot capacitance ofCgd ­ 25 aF.
Notice that the large-period background oscillation h
a larger amplitude compared with the upper traces
Fig. 2a. Between the peaks, the dot potential is effective
floating; charge cannot enter the dot from the reserv
to screen the ac gate potential. Thus, more charge
induced on the SET in response to the ac excitation on
gate because the ac coupling from the gate to the SET
augmented by a factor ofCgdCdsyCS. Here Cds is the
quantum dot-SET central island capacitance.

In general, the charge response on the SET cen
island,dQSET, to the ac excitation on the gate,dVg, can
be expressed as

dQSET ­

∑
sCgd 2 Cmeasd

Cds

CS

1 Cgs

∏
dVg. (1)

The current through the SET directly reflectsdQSET.
Linear response of the SET is ensured because the r
of Cds to the total capacitance of the SET central island
about 0.05. Therefore, a change of charge of one elect
in the quantum dot induces only1y20th of an electron

-1.30 -1.25 -1.20
-10

0

10

20

(a)

S
E

T
 C

ur
re

nt
 (

pA
)

Gate Voltage (V)
0.0 0.5 1.0

0

4

C
/C

op
en (b)

N
FIG. 2. (a) SET signal vs gate voltage for three values
point contact conductance. Top to bottom:G ­ 1.65e2yh,
1.32e2yh, and 0.05e2yh. (b) Solid lines: Five capacitance
peaks extracted from data;G is varied from 0.010e2yh to
1.81e2yh. Closed circles: Derivative of the Fermi function
for a temperature of 260 mK.
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on the SET. Moreover, we obtain our capacitance lin
shapes at maximal gains of the SET where this sm
induced charge has minimal effect on the SET gain. T
reverse effect of the SET on the quantum dot char
is also very small. The ratioCdsyCS is approximately
0.06, producing negligible feedback. Finally, the charg
on the SET central island is poorly quantized since
finite source-drain voltage is applied to the SET. Usin
Eq. (1), we extract the quantum dot capacitance li
shapes,CmeassVgd, from the raw data.

During measurement of the capacitance line shap
point contact 2 is completely pinched off, and the dot
coupled to the leads only through point contact 1. T
determine the conductanceG of contact 1 in this regime,
we perform the following procedure. The conductance
contact 1 is measured with 2 completely open. To accou
for the electrostatic coupling between contacts 1 and 2,
monitor the shift of conductance plateaus of contact 1
2 is being closed. We then extrapolateG to the regime of
the capacitance measurement.

Figure 2b shows the evolution of the capacitance lin
shape with increased coupling strength. The nomin
values ofG are 0.010, 0.67, 1.09, 1.50, and1.81e2yh.
It is clear that asG increases and approaches2e2yh,
the capacitance peaks broaden and the Coulomb block
oscillations diminish and disappear.

In the very weak coupling regime, the shape of the c
pacitance peak is determined simply by thermal broa
ening. Figure 2b shows good agreement between a p
measured withG ­ 0.010e2yh and a derivative of the
Fermi-Dirac function for a temperature of 260 mK. W
normalize this and all other line shape fitting functions b
setting the integral over the line shape to correspond
the addition of one electron to the dot.

For larger tunnel barrier conductance, the capacitan
line shape changes. In Figs. 3a, 3b, 3c, and 3d, we p
with open circles capacitance peaks that we obtained
nominal values ofG ­ 0.67, 1.09, 1.50, and1.81e2yh.
We compared our capacitance peaks with expressio
that have been previously used to fit conductance pea
For example, Lorentzian lifetime broadening has be
considered [6] for characterizing the charge smeari
effects. In Figs. 3a, 3b, 3c, and 3d, we plot Ferm
peaks broadened by convolution with Lorentzians for
temperature of 260 mK with energy level widthsG ­
0.15U, 0.32U, 0.44U, and1.0U. For these fits, we have
usedG as the single fitting parameter. In these and a
other fits, the effect of the tails of neighboring peak
was included by adding seven independent peaks spa
in energy with a period of2U. The line shapes show
significant deviations from the data. To avoid clutter, w
have fit the Lorentzians to the valleys between our pea
Nonetheless, fitting to the peak centers gives an equa
poor result.

Previous measurements of charge fluctuations use
renormalized charging energyUp to account for peaks
broadened with a finite tunnel barrier conductance [8].
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FIG. 3. (a) s: data for G ­ 0.67e2yh; solid line: fit to
weak coupling (wc) theory withGwc ­ 0.55e2yh; dotted line:
Lorentzian with G ­ 0.15U; dashed line: derivative of the
Fermi function with Up ­ 0.43U. (b) s: data for G ­
1.09e2yh; solid line: wc fit with Gwc ­ 1.08e2yh; dotted line:
Lorentzian withG ­ 0.32U; dashed line: Fermi function with
Up ­ 0.33U. (c) s: data forG ­ 1.50e2yh; solid line: sc fit
with Gsc ­ 1.20e2yh; dotted line: Lorentzian withG ­ 0.44U;
dashed line: Fermi function withUp ­ 0.29U. (d) s: data
for G ­ 1.81e2yh; solid line: sc fit withGsc ­ 1.90e2yh; 1:
Lorentzian with G ­ 1.0U. (e) Tunnel barrier conductance
(solid line) vs tunnel barrier lead voltage.3: conductance val-
ues obtained from fits with wc theory.1: conductance values
obtained from fits with sc theory.

Figs. 3a, 3b, and 3c, we plot derivatives of the Fermi fun
tion with Up ­ 0.43U, 0.33U, and0.29U for a tempera-
ture of 260 mK. Here, we have usedUp as the single
fitting parameter. These line shapes clearly do not fit
data either.

Finally, we compare our experimental results to t
theoretical treatment developed by Matveev [4,5]. T
problem of interaction between the dot and the leads w
solved in the limits of weak [3,4] and strong [5] couplin
using either transmission or reflection of the tunnel barr
as a small parameter in perturbation theory. In both lim
the physics of charge fluctuations is related to spin fluct
tions in the Kondo problem. Here, instead of the degen
acy of the two-spin states, there is a degeneracy betw
the dot states withn andn 1 1 electrons. Similarly to the
Kondo effect, the charge displays a logarithmic divergen
around these degeneracy points at very low temperatu
As a result, the predicted capacitance line shape has m
weight around the half-integer values ofN in comparison
with other theoretical treatments.
163
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For weak coupling, this effect becomes pronounced
experimentally unattainable temperatures. Therefore,
the range ofGwc ø e2yh, it suffices to treat the tunnel
coupling between the dot and the leads,Gwc, with the
lowest orders in the perturbation theory. The expressi
for the capacitance far from the peak center is [3,4]

C ­
≠Q
≠Vg

­ aCgdGwc

µ
h

4p2e2

∂
3

µ
1

0.5 2 N
1

1
0.5 1 N

∂
. (2)

Near the peak center, the calculation for nonzero tempe
tures yields an expression with a Fermi-Dirac compone
and an additive correction that is linearly dependent
Gwc [14]. In the theory [4],a ­ 1.

For strong tunneling, the theory [5] is based on perturb
tion in the reflection amplitude. The predicted capacitan
is

CsNd ­ bCgdr2 ln

µ
1

r2 cos2 pN

∂
cos2pN 1 C0 . (3)

The reflection coefficientr is related to the tunnel barrier
conductance asGsc ­ 2s1 2 r2de2yh, and in the theory
b ­ 2.27. C0 is constant with gate bias; its value is
completely determined byGsc through the requirement
that the integral ofCsNd be normalized to one electron
C0 is thereforenot an independent parameter for fitting
line shapes. To account for nonzero temperature,
singularity in (3) is cut off by replacingr2 cos2 pN with
r2 cos2 pN 1

kBT
U . The corrected expression was used f

the fits.
We fit every measured capacitance peak with the abo

described expressions using the conductance as thesingle
fitting parameter with least squares optimization.
Fig. 3a and 3b, we show fits for weak tunneling wit
conductances ofGwc ­ 0.55 and1.08e2yh. These peaks
are in excellent agreement with our data measured w
tunnel barrier conductances of0.67e2yh and 1.09e2yh,
respectively. The strong tunneling line shapes are sho
in Figs. 3c and 3d. These figures show the stro
tunneling calculations for conductances ofGsc ­ 1.20
and 1.90e2yh, respectively. These line shapes agre
well with our data, obtained with conductances of 1.5
and 1.81e2yh. Figure 3d shows a capacitance peak f
a nearly transparent tunnel barrier conductance. It
difficult to discern any significant differences between an
of the theoretical calculations for these nearly sinusoid
line shapes. In contrast with theory, we found thatGwc
corresponds well to the experimentally measured value
a ­ 4. For strong coupling, we found that the coefficien
b ­ 1, to maintain the dependence of the capacitance l
shape onGsc in this limit. Similar discrepancies were
observed elsewhere [15], but their cause is not known
this time.

Figure 3e shows the dependence of the tunnel barr
conductance on the voltage of the lead defining the tu
nel barrier. We also plot the conductance values obtain
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from theoretical fits in the weakly and strongly coupled
regimes. These values have unexpectedly large fluctu
tions around the measured tunnel barrier conductanc
They are seen consistently in all of our samples. Evidentl
for a dot with a single point contact, the tunnel barrier con
ductance affecting the line shape differs from the condu
tance through the dot which does not display comparab
fluctuations. In gate voltage sweeps for a fixed tunnel ba
rier conductance, the values ofGwc or Gsc are correlated
over a few adjacent peaks. Theorists predict that such flu
tuations can arise from quantum interference inside th
dot and should therefore be highly sensitive to magnet
field. This is consistent with results fromconductanceex-
periments [16]. There are similar theoretical prediction
for fluctuations in capacitance peaks [17]. However, w
observed no effect of magnetic field for magnetic fluxe
through the dot as high as 30 flux quanta.
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