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Observation of Quantum Fluctuations of Charge on a Quantum Dot
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We have incorporated an aluminum single electron transistor directly into the defining gate structure
of a semiconductor quantum dot, permitting precise measurement of the dot charge. Voltage biasing
a gate draws charge from a reservoir into the dot through a single point contact. The dot charge
increases continuously for large point contact conductance and in single electron steps with the
contact nearly closed, and we measure the corresponding capacitance line shapes. The line shapes
are not typical of lifetime or thermal broadening but fit well to predictions of perturbation theory.
[S0031-9007(98)08102-2]

PACS numbers: 73.23.Hk, 72.15.Rn, 73.20.Fz

An isolated puddle of electrons (a quantum dot) holds auited, being complicated by interactions between contacts
discrete and measurable number of electrons. This remaiis a multiterminal geometry [7].
the case even if the puddle is weakly coupled to an electron Previous experiments have addressed the issue of
reservoir. The energetics of charging of quantum dotgharging line shapes. Researchers employed a semicon-
can be probed by addition spectroscopy, i.e., by precisductor electrometer [8] to observe the effect of charge
measurement of the energy needed to add or remove dluctuations. They modeled their results by a reduction of
electron [1]. Quantum mechanical tunneling between théhe charging energy with increasing coupling. In another
dot and the reservoir gives rise to line broadening in theexperiment [9], effects of electron tunneling between
charging spectra. For many systems, the coupling of double dots were analyzed with a similar formalism as
single state to a continuum of states produces a “lifetimave use in our line shape investigation [10].
broadening” of the state energy. For instance, spectra of We have developed an experiment that probes the ca-
excited states in atoms display a characteristic Lorentziapacitance line shape of a quantum dot with unprecedented
line shape broadening arising as a result of coupling to aensitivity. The line shapes deviate substantially from
continuum of electromagnetic modes. In quantum dotspreviously employed fitting forms [6,8] and are best de-
electrons may enter or depart from states within the dot bgcribed for all coupling strengths by the theory developed
means of tunneling to a continuum of states within one orecently by Matveev [3-5].
more electron reservoirs. Unlike the line shapes in optical We measure the capacitance line shapes of a quantum
spectra of atoms, the line shape of quantum dot leveldot with only one contact to a charge reservoir. The quan-
originates essentially in a many-body interaction betweetum dot is electrostatically defined in a two-dimensional
electrons in the dot and in the reservoirs. electron gas (2DEG) of a AlGaA&aAs heterostructure.

As the tunnel barrier conductance;, between the The 2DEG is about 1200 A below the surface with a car-
quantum dot and the macroscopic leads is increased abovier concentration of X 10'! cm™2. Measurements were
2¢2/h, quantum charge fluctuations between the dot angerformed on six different samples, each yielding very
the lead destroy charge quantization on the dot [2]. Asimilar results, and here we present detailed data from one
thorough physical description of this effect has onlyofthem. A micrograph of the structure is shown in Fig. 1a.
recently been proposed [3-5]. The estimated area of the quantum dot is alfofitum?,

Measuring the charge or the capacitance of a dot invhich corresponds to an energy level spacing qieV.
a single-terminal geometry provides the most direct in\We measured the average charging energy of the dot to be
formation about charge fluctuations and the effect of the/ = ¢%/2Cs = 0.23 meV from temperature dependence
dot-environment interaction on the charging states of thef the capacitance peaks for high tunneling barriers. Here,
dot. However, transport experiments have been the first tds = 348 aF (aF= 10~!® F) is the total capacitance of
address the issue of dot-environment coupling. Foxmathe quantum dot.
et al. [6] examined the line shape of conductance peaks In our experiment, a single-electron transistor (SET)
with increasing coupling of the dot to the leads and founddetects charge on the quantum dot with extremely high
good agreement with Lorentzian broadening. To analyzeensitivity. The metal SET is fabricated [11] with
the charging line shapes in the dot for a broad range ofl-Al,05-Al tunnel junctions [12] and incorporated
coupling strengths, conductance measurements are poouyrectly into one of the leads defining the dot.
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charge induces ac charge on the SET central island
resulting in a current through the SET at the excitation
frequency. Examples of the measured SET response as
as V, is swept are shown in Fig. 2a for three different
contact 2 tunnel coupling strengths. The upper trace is obtained
; dot for G = 1.65¢%/h, wheren deviates only slightly from
N and the electrostatic potentials in the dot and the leads
are nearly equal. A prominent feature of this curve is an
oscillation with a period of 94 mV. This period arises
due to an addition of one electron to the SET central
island through a direct capacitan€g, = 1.7 aF to the
gate, modulating the gain of the SET.

The bottom trace in Fig.2a is obtained for
G = 0.05¢*/h. Here, the charge on the dot is well
gquantized and can change only in close proximity to
points whereV = (n + 0.5). These points correspond to
the sharp peaks in the trace, spaced with a mean period of

V =E /e 6.3 mV, yielding a gate-dot capacitance@f; = 25 aF.

P g BE Y A . Notice that the large-period background oscillation has

05 0.0 05 0 1 > a larger amplitude compared with the upper traces in

Fig. 2a. Between the peaks, the dot potential is effectively
SET VdS(mV) NSET floating; charge cannot enter the dot from the reservoir
FIG. 1. (a) Micrograph of measurement setup. The leads arf0 screen the ac gate potential. Thus, more charge is
made of aluminum by shadow evaporation. The area of thénduced on the SET in response to the ac excitation on the
quantum dot is approximatel9.5 um®. (b) Schematic of gate because the ac coupling from the gate to the SET is

of drain-source. uenvoltage. characieristics. of & sngletdmented by a factor afuC./Cs. Here Cy, is the
electron transistor at a refrigerator temperature of 50 mK Show’guantum dot-SET central island capacitance.

for three values of gate voltag€,,V, = eNsgr = 0, 0.25 [N general, the charge response on the SET central
and 0.5 electrons. The arrow shows the drain voltage biatsland,dQsgt, to the ac excitation on the gatéy,, can

for optimal gain. (d) Dependence of the SET current withbe expressed as

transparent quantum dot tunnel barriers on gate voltage for c

different drain-source voltage biases. Maximum peak-to-valley _ _ Cas

modulation amplitude is at SEWy, = E./e. dQser = | (Cga — Cineas) Cs + Cgs |[dVe. (1)
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The current through the SET directly reflec®sgr.

Figure 1c shows the drain-source current-voltage rekinear response of the SET is ensured because the ratio
lationship of the SET. It changes cyclically with the of Cq to the total capacitance of the SET central island is
charge induced on the central island of the SET. Figabout 0.05. Therefore, a change of charge of one electron
ure 1d displays the dependence of the current on the SEM the quantum dot induces only/20™" of an electron
central island charge. For optimal charge sensitivity of
the SET, we set the drain-source voltage at the onset of 2=
conduction for the maximum Coulomb blockade condi- 9. 20
tion [13] (arrow in Fig. 1c), achieving a sensitivity of

1.2 X 1073¢/+/Hz to the quantum dot charge. c 4
Through application of a dc voltag®, to the lead g 10 <3
marked “gate” in Fig. 1a, charge can be drawn onto the dot > Oo
aseN = CyV,, WhereCyq is the gate-dot capacitance. O B I
However, for zero temperature and for high tunneling
barriers separating the dot from the leads, the charge onkd
the quantum dot is quantized and can only change fiom n-1081, . S 0
ton + 1 around points in gate voltage, wheve= (n + -1.30 -1.25 -1.20 0.0 05 1.0
0.5). The measured capacitance ($cas = €9n/dV,, Gate Voltage (V) N

wheren is the average number of electrons on the dot. _
The capacitance line shape is measured by applying!G. 2. (a) SET signal vs gate voltage for three values of
a small ac excitation40 xV rms, 1 kHz) to the gate. point contact conductance. Top to bottonG = 1.65¢*/h,

S .32¢2/h, and 0.05¢%/h. (b) Solid lines: Five capacitance
This signal modulates the charge on the quantum d eaks extracted from dataG is varied from 0.010¢%/h to

by an amount that is a function @&f and the coupling 1.81¢2/h. Closed circles: Derivative of the Fermi function
strength. The small ac modulation of the quantum dofor a temperature of 260 mK.
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on the SET. Moreover, we obtain our capacitance line @)
shapes at maximal gains of the SET where this small

induced charge has minimal effect on the SET gain. The § Lr,;%iﬂ ¢
reverse effect of the SET on the quantum dot charge o2 ]

is also very small. The rati@y/Cs is approximately %)

0.06, producing negligible feedback. Finally, the charge

on the SET central island is poorly quantized since a

finite source-drain voltage is applied to the SET. Using
Eq. (1), we extract the quantum dot capacitance line
shapesCieas(V,), from the raw data.

During measurement of the capacitance line shapes,
point contact 2 is completely pinched off, and the dot is
coupled to the leads only through point contact 1. To
determine the conductanee of contact 1 in this regime,
we perform the following procedure. The conductance of
contact 1 is measured with 2 completely open. To account
for the electrostatic coupling between contacts 1 and 2, we
monitor the shift of conductance plateaus of contact 1 as 5 ' ' '
2 is being closed. We then extrapol&teo the regime of = “l(e) sre, Tt ++*' TiptEEte
the capacitance measurement. D 1t s o * S ]

© 0

Figure 2b shows the evolution of the capacitance line < ©
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shape with increased coupling strength. The nominal '

values of G are 0.010, 0.67, 1.09, 1.50, ard8le?/h. -0.46 -0.44 -0.42 -0.40

It is clear that asG increases and approach2e’/h, Lead Voltage (V)

the capacitance peaks broaden and the Coulomb blockagigs. 3. (a) O: data for G = 0.67¢2/h; solid line: fit to

oscillations diminish and disappear. weak coupling (wc) theory witlG,. = 0.55¢2/h; dotted line:
In the very weak coupling regime, the shape of the calorentzian with I' = 0.15U; dashed line: derivative of the

; ; ; ; Fermi function with U* = 0.43U. (b) O: data for G =
pacitance peak is determined simply by thermal broadl 09¢2/h; solid line: we fit with G, = 1.08¢2/h; dotted line:

ening. Figure 2b shows good agreement between a peglgrentzian withT' — 0.320; dashed line: Fermi function with
measured withG = 0.010e*/h and a derivative of the y* = 0.33U. (c) O: data forG = 1.50¢/h; solid line: sc fit

Fermi-Dirac function for a temperature of 260 mK. We with G,. = 1.20¢*/h; dotted line: Lorentzian with™ = 0.44U;
normalize this and all other line shape fitting functions bydashed line: Fermi function witl/* = 0.29U. (d) O: data

. . . r G = 1.81¢%/h; solid line: sc fit with Gy = 1.90e?/h; +:
setting _the integral over the line shape to correspond t{i)orentzian V\fitél_‘ = 1.0U. (e) Tunnel barrier C(fnéuctance
the addition of one electron to the dot. rric

. . (solid line) vs tunnel barrier lead voltagex: conductance val-
For larger tunnel barrier conductance, the capacitancges obtained from fits with wc theory+: conductance values
line shape changes. In Figs. 3a, 3b, 3c, and 3d, we platbtained from fits with sc theory.

with open circles capacitance peaks that we obtained for
nominal values ofG = 0.67, 1.09, 1.50, and.81e?>/h.  Figs. 3a, 3b, and 3c, we plot derivatives of the Fermi func-
We compared our capacitance peaks with expressiort®on with U* = 0.43U, 0.33U, and0.29U for a tempera-
that have been previously used to fit conductance peakture of 260 mK. Here, we have usdd’ as the single
For example, Lorentzian lifetime broadening has beeriitting parameter. These line shapes clearly do not fit the
considered [6] for characterizing the charge smearinglata either.
effects. In Figs. 3a, 3b, 3c, and 3d, we plot Fermi Finally, we compare our experimental results to the
peaks broadened by convolution with Lorentzians for aheoretical treatment developed by Matveev [4,5]. The
temperature of 260 mK with energy level widthis=  problem of interaction between the dot and the leads was
0.15U, 0.32U, 0.44U, and1.0U. For these fits, we have solved in the limits of weak [3,4] and strong [5] coupling
usedI’ as the single fitting parameter. In these and allusing either transmission or reflection of the tunnel barrier
other fits, the effect of the tails of neighboring peaksas a small parameter in perturbation theory. In both limits,
was included by adding seven independent peaks spacéuke physics of charge fluctuations is related to spin fluctua-
in energy with a period oRU. The line shapes show tions in the Kondo problem. Here, instead of the degener-
significant deviations from the data. To avoid clutter, weacy of the two-spin states, there is a degeneracy between
have fit the Lorentzians to the valleys between our peakghe dot states with andn + 1 electrons. Similarly to the
Nonetheless, fitting to the peak centers gives an equallitondo effect, the charge displays a logarithmic divergence
poor result. around these degeneracy points at very low temperatures.
Previous measurements of charge fluctuations used /s a result, the predicted capacitance line shape has more
renormalized charging energy™ to account for peaks weight around the half-integer values ®fin comparison
broadened with a finite tunnel barrier conductance [8]. Inwith other theoretical treatments.
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For weak coupling, this effect becomes pronounced afrom theoretical fits in the weakly and strongly coupled
experimentally unattainable temperatures. Therefore, inegimes. These values have unexpectedly large fluctua-
the range ofG,. < e?/h, it suffices to treat the tunnel tions around the measured tunnel barrier conductance.
coupling between the dot and the leads,., with the  They are seen consistently in all of our samples. Evidently,
lowest orders in the perturbation theory. The expressiofior a dot with a single point contact, the tunnel barrier con-

for the capacitance far from the peak center is [3,4] ductance affecting the line shape differs from the conduc-
90 h tance through the dot which does not display comparable
C=-—""=0aCoiGw| 755 fluctuations. In gate voltage sweeps for a fixed tunnel bar-

aV, 4me

rier conductance, the values 6f,. or G,. are correlated
% < 1 + 1 ) ) over a few adjacent peaks. Theorists predict that such fluc-
05-N 05+N tuations can arise from quantum interference inside the
Near the peak center, the calculation for nonzero temperdlot and should therefore be highly sensitive to magnetic

tures yields an expression with a Fermi-Dirac componenﬁekﬂ- This is consistent with results frooonductancex-

and an additive correction that is linearly dependent orPeriments [16]. There are similar theoretical predictions
Gye [14]. In the theory [4]a = 1. for fluctuations in capacitance peaks [17]. However, we
For strong tunneling, the theory [5] is based on perturbaobserved no effect of magnetic field for magnetic fluxes

tion in the reflection amplitude. The predicted capacitancéhrough the dot as high as 30 flux quanta.
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The reflection coefficient is related to the tunnel barrier
conductance a&, = 2(1 — r?)e?/h, and in the theory

b =227. Cyp is constant with gate bias; its value is
completely determined by, through the requirement
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Cy is thereforenot an independent parameter for fitting "Current address: Bell Labs, Lucent Technologies, Murray
line shapes. To account for nonzero temperature, the Hill, NJ 07974.
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