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Universal Linear Density of States for Tunneling into the Two-Dimensional Electron Gas
in a Magnetic Field
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We have developed a technique capable of measuring the tunneling current into both localized
and conducting states in a 2D electron system.I-V characteristics for tunneling are obtained with
no distortions arising from low 2D in-plane conductivity. In a perpendicular magnetic field, a
pseudogap develops in the tunneling density of states at the Fermi energy. We resolve a linear energy
dependence of this pseudogap at low excitations. The slopes of this linear gap are strongly field
dependent. The data are suggestive of a new model of the gap in the presence of disorder and external
screening. [S0031-9007(97)04269-5]

PACS numbers: 73.20.Dx, 71.45.Gm, 73.40.Gk
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Characteristics of electrons tunneling into a two
dimensional (2D) system differ considerably from thos
of the three-dimensional (3D) case. The distinction
especially pronounced when a magnetic field is applie
in the tunneling direction (perpendicular to the plane i
the 2D case). In the simplest picture, such a magne
field effectively localizes electrons in the 2D system. A
electron tunneling into an energetically unfavorable pos
tion cannot readily move away and instead tends to mo
in circles. As a result, tunneling measurements of 2
systems in a magnetic field display effects attributable to
“pseudogap” in the tunneling density of states (TDOS)
low injection energies [1–4]. In contrast, for 3D system
the tunneling electron can move parallel to the field line
to evade being localized at a position of high potenti
energy and such a field-induced gap has not been detec

A number of experimental difficulties have impaired
the study of electron tunneling into a 2D layer. First, i
conventional tunneling measurements, electrons that tu
nel into a 2D system introduce charge which must b
removed from the system to avoid local charge accum
lation at long time scales. This is achieved by condu
tion within the 2D plane. As a result, only contributions
from delocalized states can be detected. The energe
of tunneling into localized sites, though of great theo
retical interest, have not been measured experimenta
Second, previous schemes for probing the energetics
electron tunneling into 2D in semiconductors [2,3] relie
on the measurement of the tunneling current between t
2D layers, yielding a convolution of effects from both lay
ers. Tunneling from a 2D into a spectroscopically featur
less 3D layer achieves superior resolution of 2D featur
[5]. However, until now it was only possible to measur
tunneling at zero bias between 2D and 3D in semicondu
tor heterostructures [1,4].

Here, we introduce a new technique that we call “time
domain capacitance spectroscopy” (TDCS) for measuri
0031-9007y97y79(15)y2867(4)$10.00
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the TDOS of a 2D electron system (2DES). TDC
eliminates the problems discussed above by measuring
of the current entering or exiting the 2D layer, includin
contributions arising from electrons entering localize
sites. Using TDCS, we measure the tunneling curre
into a 2DES from a 3D system at arbitrarily low value
of the 2D in-plane conductivity. We can now determin
the completeI-V characteristics for structures to which
direct Ohmic contact is not possible.

In this Letter, we discuss results from a detailed surv
of the excitation dependence of tunneling into a 2DES
a magnetic field and in the presence of disorder. In t
low excitation regime, we find a behavior which is no
predicted by any of the prior theoretical models for th
system [6–8]. The TDOS is found to have a univers
linear dependence on energy near the Fermi energy
all field strengths and electron densities. Moreover, t
slopes of this linear gap are proportional to the inverse
the magnetic field strength over a wide range of fields.

Figure 1(a) depicts the type of samples used in our e
periment. The 2DES is sandwiched between two ele
trodes, close enough only to the bottom electrode to p
mit tunneling of electrons. Mesas etched from two wafe
grown using molecular beam epitaxy have been studi
Wafer A consists of a degeneratelyn dopeds1017 cm23d
GaAs substrate followed by a160 Å AlGaAs tunnel bar-
rier. On top of that, a150 Å GaAs quantum well is grown
which defines the 2DES. A thicks1550 Åd AlGaAs block-
ing barrier prevents charge transfer between the well a
the top GaAs electrode. The blocking barrier contains
n doped region to provide electrons for the well. Measur
ments were performed on circular mesas with400 mm di-
ameters. This sample has been studied in detail previou
using frequency dependent capacitance measurements
to determine zero-bias tunneling characteristics. Wa
B [9] has a smaller dopant concentration in the blockin
barrier and a thinner tunnel barriers143 Åd. A dc bias
© 1997 The American Physical Society 2867
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FIG. 1. (a) Structure of our samples. (b) Evolution of th
conduction band profile of our sample in one measurem
cycle. (c) External circuit used to measure the current flowi
out of the sample. (d) Typical signalsVbpd at the HEMT
input for zero magnetic field, using 3.3 mV excitation voltag
steps. Notice the exponential decay with time. (e) At 4 T, t
recorded trace deviates from an exponential decay. The de
rate decreases as the signal decays.

applied to the top gate permits variation of the electron de
sity in the quantum well from depletion to6 3 1011 cm22

(sampleA) and3 3 1011 cm22 (sampleB). The mobil-
ity of the 2DES in sampleA was estimated [10] to be
1 3 105 cm2yV s at a density of2 3 1011 cm22, and the
mobility of sampleB is expected to be higher. All feature
of the tunneling suppression described in this paper ha
been observed in both samples.

Figure 1(b) shows the evolution of the conductio
band diagram for our samples during one cycle
TDCS measurement. We start with the 2DES in equ
librium with the 3D substrate. At timet ­ 0, a sharp
(,10 ns step rise) voltage step is applied. This creat
an offset in the chemical potential on the two sides
the tunnel barrier, inducing a tunneling current. As ele
trons tunnel, this offset equilibrates, and the decay sig
is recorded in real time. To measure the current across
tunnel barrier, a capacitance bridge [Fig. 1(c)] is utilize
Voltage steps of opposite polarity are applied to the su
strate of the samplesCT d and to one plate of a standar
capacitorsCsd at precisely the same instant. The oth
plate of Cs and the top electrode ofCT are electrically
connected, and the signal at this balance point is fed i
the gate of a high electron mobility transistor (HEMT).

Figures 1(d) and 1(e) display typical recorded signa
reflecting the voltage at the balance point of the brid
sVbpd as a function of time. The electron tunneling curre
2868
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between the substrate and the 2D layer gives rise to a d
placement current that chargesCs, leading to the observed
decay signal. The amplitude of the step applied toCs is ad-
justed so that this signal decays to zero after electrons ce
tunneling. If the tunneling conductance is independent
the voltage across the barrier, the recorded signal will
a familiar RC exponential decay, as illustrated by the lo
scale plot in Fig. 1(d). On the other hand, a voltage d
pendent tunneling conductance, as in the case of magn
field-induced tunneling suppression, will produce a dec
which deviates from a pure exponential as in Fig. 1(e
The dc potential at the bridge balance point is fixed by
resistorRBIASs70 MVd. Charge transfer throughRBIAS

occurs on long time scaless.100 msd and does not distort
the much faster observed tunneling signals. All measu
ments described in this Letter take place at a temperat
of 30 mK.

Using charge conservation, we have determined th
there is a fixed relationship between the barrier curre
and the displacement (measured) current. After applic
tion of the voltage step, the current across the barrier
found to be proportional to the initial time derivative o
the voltage at the balance point:

Ibarrier ­ 2CS

dVbp

dt
where

CS ­
C1CS 1 C2CS 2 C1C2

C1
. (1)

C1 and C2 in Eq. (1) are the simple geometrical capac
tancesC1 ­ eAysb 2 ad and C2 ­ eAya, wherea and
b are defined in Fig. 1(b),e is the dielectric constant, and
A is the area of the mesa. Elsewhere [11], we prove th
relationship (1) remains true, independent of changes
the measured capacitance of the sample created by va
tions of thermodynamic DOS in the quantum well.

Before the voltage step is applied, the 2D plan
has the same electrochemical potential at all positio
Immediately after the voltage step is appliedst ­ 01d,
no charge has been transferred into the 2DES, and
2D plane remains an equipotential. The simple plan
geometry of the sample dictates that this is true ev
in situations of very low 2D conductivity. Att ­ 01,
the voltage across the tunnel barriersVbarrierd is simply
a fraction of the voltage step appliedsVstepd, given by
Vbarrier ­ saybdVstep . The 3D substrate is always highly
conducting, and electrons can tunnel everywhere into
2DES, including localized tunneling sites.

By applying voltage steps of different amplitude an
taking initial time derivatives of the corresponding transi
tor signal, the completeI-V characteristics of the tunnel
barrier can be mapped out. Signals from the experime
are extremely faint, and immense signal averaging is
volved in our measurements. A novel signal processi
[12] and rapid averaging system permits data acquisiti
with ,18 bit digital resolution.

Figure 2 shows the tunneling conductancesIyV d of
sampleA plotted against the voltage across the barri
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FIG. 2. Dependence of the tunneling conductancesIyV d of
sampleA on excitation voltage across the tunnel barrier fo
different magnetic field strengths at 30 mK and a fixed dens
of 1.9 3 1011 cm22. Inset: conductance curve for sampleB at
4 T andn , 3.

for magnetic field strengths of 0, 1, 2, 8, and 16
at a fixed electron density of1.9 3 1011 cm22. This
density is high enough so that no zero-bias tunnelin
suppression is observed at zero field. Application of
magnetic field reduces the tunneling conductance arou
zero bias. The suppression becomes deeper and w
as the field is increased. This field-induced tunnelin
suppression differs qualitatively from the logarithmic
suppression [13] observed in the low density regim
at zero field [11]. An increase in the strength of th
suppression is accompanied by a change in the curvat
of the high excitation part of the conductance curve
when the magnetic field is increased. Even though t
conductance curves at high excitation appear rounded
high fields, the zero-bias region remains linear in voltag
with both the magnitude and the slope significantl
reduced. This singular behavior is illustrated by the inse
of Fig. 3, which zoom in near the zero-bias region o
the conductance curves for different field strengths. Su
a linear energy dependence of the TDOS is observ
over the full range of densities in both samples, exce
near depletionsn # 5 3 1010 cm22d. The inset of Fig. 2
displays a conductance curve from sampleB at a field of
4 T andn , 3. In addition to the zero-bias suppression
features associated with adjacent Landau levels can
identified at higher excitations.

To our knowledge, no existing model other than the 2
Coulomb gap [8,14] predicts linear DOS at low energie
for such a wide range of field strengths and densities as
served in our samples. However, contrary to expectatio
for a Coulomb gap, the slopes of the observed linear g
are strongly field dependent. Figure 3 shows the slopes
the linear regions of the conductance curves plotted agai
inverse magnetic field. For filling factorsn , 1, the data
points fall onto a straight line extrapolating to a negativ
intercept on the vertical axis. For low fields, there are d
r
ity

T

g
a
nd

ider
g

e
e
ure
s

he
at

e,
y
ts
f
ch
ed
pt

,
be

D
s

ob-
ns
ap
of

nst

e
e-

FIG. 3. Insets: tunneling conductance of sampleA vs excita-
tion voltage for six different magnetic fields. The units are th
same in all insets, with the abscissa in mV and the ordinates
microsiemenssmSd. Different ranges are chosen to display th
singular behavior near zero bias. Main figure: dependence
the slope of this linear gap on inverse field strength.

viations from the straight line asn varies between integer
and noninteger values.

For different 2D electron densities, the conductan
curves remain linear near zero bias. As a function
density, the slopes of the linear pseudogap exhibit minim
at integer n. For instance, at 8 T the magnitude o
the slope drops by a factor of 2 atn ­ 2 compared to
n ­ 1.5. In Fig. 3, data points corresponding to intege
n are marked. These minima in the slope of the linear g
at integern might be attributed to a smaller backgroun
DOS between two Landau levels. Other than particula
associated with integern, our data display only a very
weak overall density dependence.

In the Coulomb gap picture, the states in the vicini
of the Fermi level are assumed to be localized. The
electrons are treated as classical point charges at fi
positions in space with no overlap of the electron
wave functions. The phase space available for elect
tunneling is reduced since it costs more energy to add
electron to the system when another electron is loca
close to the tunneling electron. The resulting Coulom
gap in the TDOS varies linearly with excitation energy
2D with a slope determined solely by physical constan
such as the electronic charge and dielectric constant [1
In contrast, the slope of the linear gap in our data depe
inversely on field strength with an offset, suggesting th
our data cannot be explained by a simple Coulomb gap

While no existing theory explains our results, the ma
features of our data are consistent with predictions fro
a simple phenomenological model. In this picture, th
2DES is modeled as isolated puddles with uniform cha
ing energies and random background offsets. We n
that the 2DES may indeed appear incompressible [6]
the very fast time scales for tunneling and thereby inhi
tunneling while still permitting dc transport in the 2D
2869
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FIG. 4. (a) From the left:I-V curve and corresponding
conductance curve of a single puddle. A random offs
voltage shifts the conductance curves along the voltage ax
Summation of these randomly shifted curves results in a
shaped overall conductance curve. (b) When the pudd
become small enough so thateyC is larger than the background
offset voltage, the overall conductance vanishes near zero bi

plane. In our model, electrons tunnel into compressib
puddles that exist within this incompressible backgroun
In contrast to the Coulomb gap model, interactions amo
the puddles are neglected. This assumption may be j
tified by the presence of the nearby 3D electrode whic
screens the interactions among the puddles.

Each puddle contributes a Coulomb blockade typeI-
V characteristic, leading to a conductance curve whi
is constant in voltage except for a region of widtheyC
(where C is the capacitance of the puddle) around ze
bias where the conductance vanishes [Fig. 4(a)]. T
conductance curve of an individual puddle is shifte
from zero bias by a random background voltage offs
created by nearby dopants or impurities. The sum
conductances from all puddles will thus be linear i
voltage near zero bias and the slope of this linear gap
proportional toC. SinceC is proportional to the area of
the puddles, our data can be explained if the average a
of a puddle varies inversely with magnetic field.

This model can also explain the observation that th
slopes of the linear gap extrapolate to zero at large b
finite magnetic field (Fig. 3). In the high field limit,
the puddles become small enough so that their Coulom
blockade energies exceed the range of the backgrou
offset energies. In this regime, summing contribution
from different puddles leads to zero conductance at lo
bias up to a certain voltage beyond which the conductan
rises linearly with voltage to the unsuppressed valu
as depicted in Fig. 4(b). It is not necessary to hav
an infinitesimal puddle to achieve a zero slope fo
conductance near zero bias.

The above deductions are based on the assumptions
larger puddles break up into smaller ones and that t
mean area of the puddles shrinks linearly with increasin
field strength. Electrons therefore charge parallel pla
capacitors whose lateral dimension is proportional to th
magnetic length. From the width of the gap in our data, w
estimate the proportionality constant to be about 6. As t
model fits our data significantly better than other existin
models, we speculate that puddles may indeed form in t
disordered 2D layer, although we do not know what th
2870
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compressible puddles are or why they apparently shrink
the magnetic field is increased.

A preliminary TDCS study of a sample with much
higher mobility s.106 cm2yV sd [15] indicates that the
low energy behavior of the tunneling suppression differ
from that in the more disordered 2D systems discussed
this paper in two basic ways: (1) While the linear energ
dependence is still observed for magnetic fields below
T, the slopes of the V-shaped pseudogap decrease m
rapidly with increasing magnetic field. Above 3 T, the
gap becomes nonsingular and continues to widen as t
field strength is raised. (2) At high fields, the zero-bia
conductance is strongly suppressed, by 4 to 7 orders
magnitude from the zero field value, depending on th
precise value ofn.

In summary, we used a novel capacitance techniq
to measure the contributions of both localized and con
ducting tunneling states to the TDOS of a 2DES. In th
presence of disorder and screening from a nearby 3D ele
trode, the suppression in the TDOS is found to be linea
in energy near the Fermi energy for a wide range of dens
ties and field strengths. The slope of this linear pseudog
varies inversely with magnetic field strength.
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