Electrons in artificial atoms

R. C. Ashoori

Progress in semiconductor technology has enabled the fabrication of structures so small that
they can contain just one mobile electron. By varying controllably the number of electrons in
these ‘artificial atoms’ and measuring the energy required to add successive electrons, one can
conduct atomic physics experiments in a regime that is inaccessible to experiments on real

atoms.

THE puzzle of atomic spectra was a prime motivation for the
development of quantum mechanics. Niels Bohr unravelled the
mystery by determining that the wavelike nature of electrons
allowed them to occupy only discrete orbits within an atom, with
well defined energies. Starting about 10 years ago, advances in
semiconductor technology allowed the fabrication of structures so
small that their discrete quantum level structure was resolvable. In
the past few years, powerful new spectroscopic probes have
revealed a wealth of new physics in these ‘artificial atoms’.

Essentially, artificial atoms are small boxes about 100nm on a
side, contained in a semiconductor, and holding a number of
electrons that may be varied at will. As in real atoms, electrons are
attracted to a central location. In a natural atom, this central
location is a positively charged nucleus; in an artificial atom,
electrons are typically trapped in a bowl-like parabolic potential
well in which electrons tend to fall in towards the bottom of the
bowl. One can consider the artificial atom as a tiny laboratory in
which quantum mechanics and the effects of electron—electron
interactions can be studied.

The spacing between atoms in a semiconductor crystal is
typically about 0.3—0.4 nm. In artificial atoms, electrons are con-
fined in structures about 100 nm in diameter. Thus, an artificial
atom in a crystal comprises many real atoms. The quantum-
mechanical theory of solids explains why the electrons do not
get trapped on the real atoms of the crystal and instead only sense
the potential well of the artificial atom. This theory dictates that
some electrons in a crystal behave as free electrons, albeit with a
different mass'. For example, electrons in the semiconductor
gallium arsenide appear to carry a mass that is only 7% of the
mass of free electrons.

The physical characteristics of an artificial atom (sometimes
called a ‘quantum dot’) differ considerably from that of a natural
atom for one important reason: artificial atoms are typically much
larger than real atoms. The electron orbits do not simply scale with
size. Imagine an atom containing many electrons whose size is
continuously variable. As it is made larger, the Coulomb energy
arising from the repulsion between electrons orbiting around the
nucleus decreases because the average spacing between electrons
increases. However, there is another energy scale in the problem:
the separation in energy of the different orbits of electrons in the
artificial atom. As the atomic size increases, the differences in the
orbital energies decrease faster than the Coulomb energy. It
follows that in a large atom, the effects of electron—electron
interactions are relatively more important than in a small atom.

It may not be long before these distinctions affect modern
electronics. The present view of small electronic devices depicts
them as controlling the motion of small and classical ‘seas’ of a few
thousand electrons. As devices shrink, this view no longer holds.
In fact, it is already possible to create electronic devices small
enough to have device characteristics sensitive to the motions of
single electrons within them, even at room temperature®. Elec-
tronic devices may no longer be seen as small seas of electrons but
instead as very large ‘atoms’. Building devices at this size scale that

NATURE - VOL 379 - 1 FEBRUARY 1996

have reproducible and desired electronic properties will be an
immense challenge. This Review describes structures in which
researchers have now succeeded in precisely controlling the
number of contained electrons, down to as few as one electron.
It focuses on the unusual physical features of these large atoms
unveiled by these studies. At low temperatures, electrons fall into
distinct quantum-mechanical energy levels of these atoms, and the
large Coulomb energy exerts a profound influence. Transitions
never observed in the spectra of ‘natural’ atoms are readily seen
for artificial ones. The electrons in artificial atoms can also act
lethargically, reluctant to displace themselves to make way for
another electron, even on a timescale of milliseconds. Most
strangely, the large Coulomb repulsion can make it seem that
electrons attract one another.

Measurements of the orbital energies of electrons in an artificial
atom thus yield a wealth of data about a new physical regime. A
large number of experimental probes have been used. Some
techniques are electrical, such as measuring the current through
a single dot*', or the capacitance of arrays'’® and single
quantum dots". Others have employed infrared and optical
spectroscopies on arrays of dots'>™'7 and on individual dots™.

Construction and measurement

I will focus here on results from two newly developed tech-
niques™*!? which have particularly affected our understanding
of quantum dots. These methods are unique in allowing extra-
ordinarily high-resolution spectroscopy of single quantum dots.
The energy resolution of these spectroscopies is limited solely by
the sample temperature. Both types of experiments have been
performed on artificial atoms constructed inside a gallium
arsenide semiconductor and at very low temperatures (0.05—
0.30K).

Figure 1a shows schematically the type of sample used in one of
these experiments. The quantum dot is located between two
capacitor plates. It is close enough to one of the plates to allow
single electrons to tunnel (or hop) between the artificial atom and
the nearby plate. Tunnelling is a quantum-mechanical process
that allows electrons to pass through barriers that would be
impenetrable classically. The artificial atom is far enough from
the other capacitor plate to prohibit tunnelling to this plate.

How is such a sample actually realized? Utilizing modern
semiconductor technology, it is possible to grow gallium arsenide
(GaAs) semiconductor crystals one atomic layer at a time®.
Moreover, the material composition can be changed in successive
layers. Some of the gallium in a layer can be replaced with
aluminum to create aluminum gallium arsenide (AlGaAs).
AlGaAs acts as an insulator, whereas electrons move freely in
GaAs. By sandwiching a 10-nm thickness of GaAs between
AlGaAs layers, one confines electrons in a GaAs ‘quantum
well’. This quantum well is so thin that at low temperatures,
only the lowest quantum energy state of the well is occupied by
electrons. The electrons have no freedom to move in the direction
perpendicular to the well, but may only move laterally in it. By
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placing electrostatic gates on the surface of the wafer, we can
laterally confine this two-dimensional electron gas and create a
quantum dot.

Figure 1b demonstrates how the schematic picture shown in
Fig. 1a is realized in an experiment. A crystal wafer is grown layer
by layer, starting from the bottom of the diagram. The first layer is
a silicon-doped GaAs layer. The silicon doping makes this layer
metallic, and it acts as the bottom capacitor plate of Fig. 1a. Then
a thin (10-nm) AlGaAs barrier layer is grown. This barrier is thin
enough that electrons can leak through it. Above that, there is a
GaAs quantum well, and grown on top of the well is a thick (not
leaky) AlGaAs barrier. On top of the crystal wafer, chromium is
deposited to form the top capacitor plate, which I will refer to as
the ‘gate’. Additional sample processing?? on the sample surface
is used to create a gate which laterally confines electrons in the
quantum well below, creating a quantum dot.

Electric fields can be created by applying a voltage between the
plates of the capacitor. If the top plate (gate) is made positive
compared to the bottom one, electrons from the bottom plate will
be attracted in the direction of the top plate, towards the artificial
atom. Single electrons can thus be coaxed to tunnel into the dot or
expelled from it through the application of voltages on the top
plate.

After each electron is added to the dot, additional gate voltage
is usually needed to coax another electron onto the dot. As I
discuss below, this happens partly because after each electron is
added to the dot, the electron charge in the dot is larger, and other
electrons are repelled from entering. There are therefore specific
gate voltages at which an electron is added to the dot, and it is this
spectrum of voltages (the electron addition spectrum) which has
been particularly useful in understanding quantum dots.

The motion of the single electrons into or out of the dot can be
detected using a simple physical principle. When a single electron
tunnels into the artificial atom, it moves closer to the top plate of
the capacitor, and electrons in the top plate tend to be pushed
away from the plate; that is, some charge is induced on the top
plate. In these samples, the amount of charge induced is about half
of an electron’s charge. A specialized transistor enables detection
of this charge and thereby allows measurement of the gate
voltages at which single electrons were added to the artificial
atom. A small a.c. voltage of frequency around 100 kHz is added to
the d.c. gate voltage. When the gate voltage is adjusted to a voltage
at which an electron can be added to the dot, the a.c. voltage
causes the electron to tunnel back and forth between the dot and
the bottom plate. At these gate voltages, charge appears synchro-
nously with the a.c. voltage. A synchronous detector then registers
asignal only at these voltages, yielding a peak in the response. The
scheme measures the capacitance signal due to a single electron
and is known as single-electron capacitance spectroscopy (SECS).

Results from this method, taken on a sample cooled to 0.3 K,
are shown in Fig. 1c. The first peak on the left of the graph
corresponds to the first electron in the quantum dot. Subsequent
peaks correspond to additional electrons added to the quantum
dot. The peak structure is completely reproducible as one scans
the gate voltage up and down, and the widths of the peaks directly
reflect the temperature of the sample.

The other type of experiment is performed on the type of
sample displayed in Fig. 2a. Like the SECS method, this experi-
ment also measures the gate voltages at which electrons are added
to the dot. The detection method is however, completely different.
Two current leads are in such close proximity to the dot that
electrons may tunnel between the leads and the dot. A small
voltage difference is applied between the left and right leads, and
the experiment consists of monitoring the current through the
quantum dot as the gate voltage is varied. I will refer to this type of
experiment known as ‘gated transport spectroscopy’ (GTS).

For a current to flow, single electrons must pass through the
quantum dot. This can only happen under special conditions. Just
as in the SECS experiments, at particular gate voltages, it becomes
energetically favourable for one more electron to be added to the
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FIG. 1a, Schematic diagram of an artificial atom located between two
capacitor plates. The artificial atom is actually two-dimensional; the bowl-
like shape is to represent the force tending to move electrons to the centre
of the atom. b, Diagram of the sample used in single-electron capacitance
spectroscopy (SECS) experiments in a crystal grown using molecular-beam
epitaxy. The artificial atom is the black disk in the quantum well.
¢, Capacitance of the sample containing the artificial atom as a function
of the top plate (gate) voltage. The first peak on the left represents the first
electron entering the artificial atom.

dot. If the gate voltage is varied above or below these values, the
number of electrons on the dot is stable and differs by one.
However, when the gate voltage is set precisely at the gate voltage
needed for an electron to be added to the dot, the number of
electrons on the dot may fluctuate by one. This fluctuation can
occur by one electron tunnelling onto the dot from the left lead
and later an electron tunnelling off the dot to the right lead. This
process gives rise to a detectable current flowing through the dot.
In the experiment, a current peak therefore appears as the gate
voltage is swept through the position where one more electron is
added to the dot. These peaks are clearly demonstrated in the gate
voltage scan of Fig. 2b. Unlike the SECS experiment, the first peak
on the left corresponds not to the first electron in the quantum dot
but to perhaps the thirtieth. To have electrical conduction through
the dot, it must be close enough to the right and left leads for
tunnelling to occur to both. For GTS experiments, it has as yet
proven practically impossible to create a dot containing fewer than
around ten electrons®?*, for which appreciable electron tunnel-
ling occurs to both electrodes. Most GTS experiments start with
25 or more electrons in the dot™ .

As with the SECS experiment, the peak positions reflect the
energy required to add each successive electron to the dot. The
peaks have a non-zero width because there is a range of gate
voltages over which fluctuations in the electron number on the dot
can occur. Once again, this range is directly related to the
temperature of the sample.
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Interpreting the spectra

Inboth Figs 1c and 2b, electrons can then be counted one by one as
they move into the artificial atom. A special feature of the SECS
experiment is that it even allows precise knowledge of the number
of electrons in the dot by allowing observation of the first electron
in the dot.

The gate voltage scales in Figs 1c and 2b can be directly
understood in terms of the energy required to add each successive
electron to the quantum dot. There are essentially two reasons
why it takes extra energy to add each additional electron to the
dot'*", First, the electrons in the dot make it more difficult for
other electrons to enter the dot. As more electrons are added, this
repulsion increases and it takes more energy (charging energy) to
add another electron. Second, the Pauli exclusion principle
requires electrons to be in different quantum levels in the dot.
Additional electrons must be promoted into higher energy levels
(quantum level spacing). In the types of GaAs quantum dots
discussed in this Review, the charging energies are typically a
factor of 5 greater than the mean quantum level spacing.

The application of a gate voltage balances these energy require-
ments so that additional electrons can be added to the dot.
Electrons can lower their energies by entering the quantum dot
and thereby be closer to the attractive gate?. Owing to the simple
geometry of these structures, this energy change varies in linear
proportion to the gate voltage. Multiplying the gate voltage scales
in Figs 1c or 2b by a geometric factor converts this scale into an
energy scale for the quantum dot. For the case of Fig. 1c, this
geometric factor is 0.5. The spacings between the peaks in both
figures then directly reflect the additional energies required to add
successive electrons to the quantum dot. The SECS and GTS
techniques thereby yield direct energy-level spectroscopy of
quantum dots.

A model for the artificial atom

To understand the behaviour of the dot containing more than one
electron, we need to examine in some detail the quantum energy
levels of a quantum dot containing one electron. In most experi-
ments, an electron is tightly bound in a quantum well in the z
direction and has no freedom to move in this direction. I will then
consider the electron to be bound laterally in the quantum well
in the x-y plane by a potential 1/2mwir’. Here, r* = x* +y*
measures the distance from the centre of the quantum dot. The
simple mechanical analogue of this system is a ball in a bowl whose
cross-section is a parabola, and w, is the frequency that a classical
particle would exhibit while oscillating in this bowl. This case of a
circularly symmetric parabolic potential approximates well with
the actual case in experiments and turns out to be rather simple to
solve?.

In solving the Schrodinger equation for the parabolic potential,
one obtains quantum level energies given by the simple formula:

E, = hwoy2n+|l|+1) (1)

where his Planck’s constant divided by 2. There are two quantum
numbers, n and /, corresponding to the fact that the electron
moves in two dimensions. 7 is a positive integer which corresponds
to the number of nodes in the wavefunction as one moves radially
out from the dot centre, and 2|/ | gives the number of nodes seen in
moving circumferentially about the dot centre. / may be any
integer, positive or negative. States of positive / correspond to
electron wavefunctions moving anticlockwise with time as viewed
looking down from the positive z axis, negative [ states move in the
opposite direction. These correspond to a series of circular orbits,
with states of larger |/ | orbiting farther away from the dot centre.
Figure 3a displays a picture of the orbits for a particular value of .
The mean radius of the different [ states increases as /1.

Apart from having the quantum numbers n and ! discussed
above, electrons also have a spin quantum number, s, which can
take values of +1/2. An electron with s = +1/2 has a spin which
points along the z axis perpendicular to the plane of the quantum
dot (spin up); an electron with s = —1/2 has a spin which points
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against it (spin down). In zero magnitude field, electrons with
either spin state have precisely the same energy.

It is useful to examine the energy levels determined by equation
(1). Plotting the energy levels as a function of /, we obtain the
results of Fig. 3b. The lines in the figure connect states that have
the same value of n. The bottom V’ is for states with n = 0. Each
state can hold two electrons, one with electron spin up and one
with spin down. At low temperatures, non-interacting electrons
will simply fall like marbles into the lowest available states. Each
of the circles shown in Fig. 3b can hold two electrons; the filled
circles represent filled states in a quantum dot containing 30
electrons. Note that for this case of zero magnetic field, there
are typically several states for the same value of the energy; that is,
the states are degenerate.

If a magnetic field, B, pointed in the z direction is applied, the
energies and orbits of the levels change somewhat. Classically, in
the absence of any confining potential, the magnetic field effec-
tively confines electrons, causing them to move in circles in the
clockwise direction with a frequency w, = eB/mc. The quantum-
mechanical energy levels are now given by:

E,; = [lhoe/2 + Fy/(0¢/2)" + @f(2n + |I] + 1)] (2)

The energy has changed in two basic respects. There is now a first
term that depends on / and not just the absolute value of I
Therefore, electron states with negative / values have lower
energies than those with positive / values. Because the different /
states represent wavefunctions that rotate in time about the dot
centre, there is a magnetic moment associated with these states.
This is the reason for the first term in equation (2). Positive I states
have magnetic moments pointing opposite to the applied mag-
netic field, giving them higher energy than the negative / states
whose moments point along the field. Finally, the second term in
equation (2) is somewhat different from equation (1). The ener-
gies are higher, and this is because the magnetic field has
enhanced the electron confinement in the dot.

The magnetic field also creates an energy difference between
the spin-up and spin-down electrons in a state. The electron spins
have an associated magnetic moment, and so in an externally
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FIG. 2a, Schematic diagram of samples used in gated transport
experiments. b, Current through an artificial sample as a function of gate
bias. The first peak on the left is thought to represent the addition of the
thirtieth electron to the artificial atom. (Courtesy O. Klein)

415



NREVIEW ANIIVLE

Energy in units of confinement energy

-10 -5 0 5 10

175 225 275 325
Magnetic field (T)

1.25

FIG. 3 a Left, orbits (as seen looking down on the two-dimensional artificial
atom) for different values of magnitude of angular momentum |/| in the
artificial atom. The radius of each orbit increases as the square root of |/|.
Right, orbits as seen in the bowl-like potential of the artificial atom.
b, Energies of the different quantum levels as a function of angular
momentum quantum number |/ | in zero magnetic field. The different ‘Vs’
correspond to different values of the radial quantum number, n. ¢, As b, but
in the presence of a magnetic field. d, Colour-coded image from a SECS
experiment. The red and yellow traces display the energy required to add
each successive electron to the dot. To the right of the arrows, all electrons
are in the lowest Landau level. The traces are numbered corresponding to
the number of electrons contained in the artificial atom. The vertical bar
corresponds to an energy of 5meV.

applied magnetic field the electrons act rather like bar magnets,
tending to align their moments with the external field (Zeeman
effect). The energy difference between spin-up and spin-down
states is often small compared to the other energy splittings in the
quantum dot. To simplify the discussion, I first consider this ‘spin
splitting’ here to be zero.

Figure 3c displays the quantum levels after the application of a
magnetic field. Essentially two things have happened due to the
field. The ‘Vs’ have rotated to the left, and the energy separation
between the Vs has increased. If we again think of electrons as
marbles filling slots, the marbles then fall from states on the right
arm of the Vs to the left arms. Moreover, because the spacing
between the Vs increases with increased field, the marbles fall
from the upper to the lower Vs. In a magnetic field, we refer to
each of the Vs as Landau levels. At very high fields, all of the
marbles are in the left arm of the lowest V. In this case, all of the
electrons are in the ‘lowest Landau level’.

The peak positions in the SECS or the GTS experiment simply
track the energy of the highest-energy electron in the quantum
dot. This electron may be in a different quantum level depending
on the magnetic field, and each of these levels has a different
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evolution in a magnetic field. Therefore, the peak position is
expected to zig and zag as the highest-energy electron moves from
state to state. In the absence of spin splitting, each of the energy
levels depicted in Fig. 3b and ¢ holds two electrons of precisely the
same energy. In this case, one would expect the two electrons to
undergo identical level shifts (zigs and zags) as the magnetic field
strength is varied. In reality, each level of Fig. 3c is split into two
different energies (two circles displaced vertically, one for spin up
and the other for spin down) by the magnetic field. At 2 tesla (2T),
the amount of this splitting is only about 0.05 meV, or approxi-
mately 0.5K in temperature units. This value is rather small
compared to the energy differences between orbitals in a quantum
dot which are typically around 1-2meV.

Both GTS® and SECS* measurements demonstrate the zigzag
behaviour. In the SECS experiments, one creates plots such as the
one shown in Fig. 3d. This is a compendium of many data sets such
as the one shown in Fig. 1c, now taken at varying values of the
magnetic field strength. In Fig. 3d, the horizontal axis represents
magnetic field strength and the vertical axis represents the voltage
across the capacitor (or energy). The capacitance is plotted on a
colour scale with yellow, red and black representing the highest,
intermediate and lowest capacitances, respectively. Capacitance
peaks are therefore signified by yellow and red traces. The traces
clearly display a zigzag behaviour that ceases abruptly, just as we
would expect from the simple-minded model of Fig. 3c. The
zigzags stop at the positions of the arrows in Fig. 3d, the magnetic
field strength beyond which all of the electrons are in the lowest
Landau level.

Subtle differences exist between the observed traces and the
results expected from the model of Fig. 3b and c. Because the spin
splitting is very small, the model predicts pairs of two successive
electron traces (such as for electrons 27 and 28 or electrons 29 and
30 in Fig. 3d) to have nearly identical zigzag features. This is not
the case; no pairs of nearly identical traces are seen. Also, the
model predicts zigzags to occur well before the magnetic field
value at which all electrons fall into the lowest Landau level; the
data only display zigzags just below this field value. What is
responsible for these and other deviations from the ideal model
behaviour? One issue is most suspect: the simple model neglects
the fact that the electrons interact with each other.

Magnetic field (T)

FIG. 4a, Colour-coded image from a SECS experiment for the first ten
electrons in a quantum dot. The lowest red and yellow trace displays the
energy required to add the first electron into the dot. The white circles
indicate a kink which is thought to be the field at which all of the electronic
spins align with the magnetic field.
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Adding one to ten electrons

There is another important change in the quantum states with the
application of magnetic field. States of all / values shrink in radius
as the magnetic field is increased. For high magnetic fields (when
o, is larger than @), the radius of a particular / state shrinks as
1/Vv/B. All of the circles shown in Fig. 3a tend to converge to the
dot’s centre.

Let us now examine the bottom trace of Fig. 4. This trace shows
SECS results for the magnetic-field dependence of the energy of
the quantum dot containing only one electron. Note that this
energy increases as the magnetic field strength is increased owing
to the enhanced confinement of the electron by the magnetic field.
This behaviour of the one-electron energy turns out to be easily
predictable using equation (2). This electron stays in the lowest
energy state of the quantum dot, withn = 0 and / = 0. A fit to this
trace using equation (2) determines that the diameter of the first
electron’s wavefunction is about 40 nm.

For more than one electron in the dot, interactions between
electrons make understanding the spectra substantially more
complicated and rich than one might conclude from the discussion
above™. This is seen in the basic problem of just two electrons in a
quantum dot.

The second trace from the bottom in Fig. 4 is for two electrons
in the artificial atom. Notice that this trace appears qualitatively
different from that of the first electron. Rather than smoothly
moving up in energy, the two-electron energy shows a very clear
kink at a magnetic field strength of 1.5 T. The origin of this kink,
like the zigzags seen in Fig. 3d, is a shuffling of electrons between
quantum states in the dot. In this case, it is the flipping of the spin
of one of the two electrons within the quantum dot.

First, I consider two electrons in the dot with no Coulomb
repulsion between them. Because of the Pauli exclusion principle,
the two electrons must exist in quantum states that have at least
one quantum number which is not the same. In zero magnetic
field, the electron energy does not depend on the spin direction.
These two electrons thus fall into the lowest available energy
states which have quantum numbers n =0,/ =0, and s = +1/2.
Such a state with oppositely pointing spins is known as a singlet
state. At sufficiently high field, the electron which in zero field had
its spin magnetic moment pointing against the applied field will,
owing to the Zeeman effect, flip its spin so that the moment points
along the field. When this happens, both electrons will have their
spins pointing the same way, and they will have the same value of s.
In this ‘triplet’ state, one of the electrons moves from an/ = ( state
to an / = 1 state. Thus this singlet to triplet crossing arises when
the Zeeman energy exceeds the energy to promote an electron to
the [ = 1 state. For the quantum dot of Fig. 4 in the absence of
Coulomb repulsion, one would expect this crossing to occur at
25T. In reality, the crossing is observed to occur at around 1.5 T.
Why is this so?

The simple model of electrons as bar magnets clearly fails.
When we include the Coulomb interaction between the electrons,
we see that it actually drives the singlet to triplet crossing. In fact,
the singlet—triplet crossing is predicted to occur even in the
absence of a Zeeman interaction. The basic physics is simple,
and I'will approximate the actual case by considering one-electron
wavefunctions. In reality, the wavefunctions change somewhat
when the Coulomb interaction is added to the problem, and the
electron motions are actually correlated in time to keep the
electrons widely separated.

When the two electrons both have the same spatial quantum
numbers (thatis,n = 0 and / = 0 for both electrons), the energy of
repulsion between the two electrons is large because the electron
wavefunctions are identical. In contrast, when one of the two
electrons moves into an/ = —1 state, the electrons are on average
farther apart, decreasing the Coulomb energy. There is a com-
petition between the propensity for electrons to move towards the
centre of the dot where the confinement potential is low and the
tendency for electrons to repel each other. As the magnetic field
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FIG. 5 Peak positions from a gated transport spectroscopy (GTS)
experiment for a quantum dot containing about 30 electrons. The filled
black circle marks the magnetic field value at which all of the electrons fall
into the lowest orbital Landau level. The small arrows demarcate the spin
flips of individual electrons in the dot. The last arrow on the right marks the
field at which the electrons in the dot become spin-polarized. The black
triangle marks the field values at which ‘hole bunches’ are created within
the dot (adapted from ref. 34). Inset, schematic diagram of the spin-flipping
process.

strength is increased in the two-electron dot, states of larger |/|
move closer to the dot centre. When the radius of the / = —1 state
becomes sufficiently small, the balance tips in favour of one
electron moving from the dot centre out to the / = —1 state. To
satisty the Pauli exclusion principle, the wavefunction describing
the two-electron system must change sign when the coordinates of
the two electrons are interchanged. This turns out to mean that an
electron must flip its spin direction as it moves to the / = —1 state.
The two-electron problem has been solved exactly’*?, and the
predicted singlet to triplet crossing falls close to that observed in
Fig. 4.

What about the dot containing more electrons? The spectra can
no longer be predicted exactly. There exist several methods for
deriving approximate spectra, the most accurate of which is
known as ‘exact diagonalization’***. This method is especially
computer-intensive, and calculations can only be made for the
case of a few electrons in the dot. In exact diagonalization, one
typically approximates the many-body electron wavefunctions
using combinations of a finite number of single-electron wave-
functions. These methods have been used to model the data in
Fig. 4, and it is possible to identify the ‘kinks’ in these traces with
predicted transitions. The main series of kinks, indicated by white
circles in each of the traces, is thought to be the magnetic field
value of the transition for flipping the last electron moment in line
with the magnetic field”. Once again, these transitions are largely
driven by the Coulomb interaction between electrons and not by
the interaction of the electron moments with the external field.

Many-electron interactions

For yet more electrons, there is again strong evidence that
transitions in the dot are driven by interactions between the
electrons. Figure 5 displays peak positions as a function of
magnetic field for conductance measurements in a GTS experi-
ment at a temperature of about 0.08 K. This dot contains around
30 electrons. The filled circle indicates the magnetic field value, as
marked by the arrows in Fig. 3d, where the last electron falls into
the left arm of the lowest V of Fig. 3c. These lower-temperature
measurements reveal something else. Beyond the filled circle, a
new series of kinks develops in the spectra. As all of the electrons
are in the lowest possible spatial energy states, these kinks must be
due to spin-flips. As with the two-electron case above, the Zeeman
interaction is simply too weak to cause these energy level crossings.
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How do the interactions produce the observed level crossings?
Let us start with the case of having all of the electrons in the lowest
Landau level, and each orbital / state occupied by two electrons.
With the application of stronger magnetic field, these orbits
(shown in Fig. 3a) tend to converge towards the centre of the
dot. If no electrons were to change their orbital states, in the limit
of an infinite magnetic field all of the electrons would be com-
pressed to a point at the centre of the dot. Because electrons repel
each other, this obviously cannot happen. To lower the electron
density at the centre of the dot, spin-down electrons are trans-
ferred to spin-up sites at the dot’s edge. This process is shown
schematically in Fig. 5 inset. Even though there is only a small
energy difference between spin-down and spin-up states for non-
interacting electrons, the spin-down states are depopulated
because there exist lower-energy states at the edge of the dot.

How does one model this situation mathematically? The sim-
plest scheme is to account for the electron repulsion by creating a
simple ‘mean-field’ potential which each electron feels as a result
of repulsion from all of the other electrons in their average
positions. This potential is added to the confinement potential
in the dot, and then the electrons are allowed to rearrange into
different orbits to take this potential into account. As the electrons
have moved, the problem needs to be solved again for the new
electron distribution. The iterations continue until the electron
distribution stops changing.

This ‘self-consistent’ approach® does indeed produce the type
of spin-flipping behaviour suggested by the data on Fig. 5. How-
ever, it fails to explain this data in detail. The spin flips in the data
occur more frequently at lower fields, and less frequently at higher
fields. The self-consistent model predicts a much weaker depen-
dence on field than demonstrated in observations. What is missing
here?

Electrons attract?

The self-consistent model treats the electrons as though they are
independent entities whose only interaction with other electrons
is through the Coulomb repulsion and through the fact that
individual electrons must occupy different single-particle orbits.
In reality, the interactions are much more subtle. The electron
motions inside the dot are actually correlated. For instance, in the
dot containing two electrons, the correlations tend to place the
electrons on opposite sides of the dot. Some of this happens
automatically because electrons avoid each other as a result of the
Pauli exclusion principle (the fact that the many-electron wave-
function must be antisymmetric under exchange of two electrons),
and this phenomenon is known as the exchange interaction.
The next most sophisticated calculation scheme beyond the self-
consistent method is the ‘Hartree—Fock’ (HF) technique, which
approximates the electron repulsion using the averaged fields of
all of the electrons in their orbits. However, HF does take proper
account of the exchange interaction. An HF calculation, when
compared with the results of Fig. 5, indeed predicts nearly the
same spin-flipping behaviour.

The exchange interaction leads to a remarkable phenomenon in
quantum dots. HF calculations demonstrate an apparent short-
range attraction between electrons. Considering wavefunctions for
individual electrons, the exchange interaction tends to cause
electrons to fill adjacent / states without leaving any gaps. This
happens because the exchange interaction is operative when
single-electron wavefunctions have some spatial overlap; when
the wavefunctions overlap, the many-electron wavefunction must
still go to zero when the two electron positions approach each
other. This phenomenon means that on average electrons in
adjacent orbits are actually kept further apart (for example, at
any time, they are on opposite sides of the quantum dot) than are
electrons in some more widely separated orbits.

The exchange interaction produces an interesting dilemma for
electrons in a quantum dot in high magnetic field. Consider the
situation where the process described in Fig. 5 inset has continued
as the magnetic field has been increased, so that now all of the
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electrons in the dot have their spins pointing up. As the magnetic
field is increased further, the orbits continue to converge to the
centre of the dot. Once again, we are faced with the problem of all
the electrons condensing to a point in the limit of high fields. One
solution would be for electrons to leave ‘holes’ (empty [ states) in
the electron puddle—orbits in the middle of the puddle which are
unoccupied—so that the electrons are not spaced too closely
together. However, the exchange interaction makes the creation
of holes energetically very costly.

HF calculations suggest the following scenario. To save
exchange energy, it is wise to keep any holes in a bunch rather
than dispersing the holes throughout the dot. Figure 6b depicts the
predicted behaviour. The left-hand figure shows the electron
droplet with the magnetic field set just above the point at which
all of the electrons become spin-polarized. The right-hand figure
shows the droplet at a field just beyond a critical value at which a
bunch of holes is introduced into the droplet. By putting the holes
into a bunch, most of the electrons retain their nearest neighbours
and hence the short-range ‘attraction’ is satisfied. At the same
time, the size of the droplet has expanded, and the energy due to
electron repulsion has been reduced. The data set displayed in
Fig. 5 and the SECS results shown in Fig. 6a both demonstrate
evidence of bunches of holes being admitted into the electron
droplet at fields beyond the fields required for spin polarization of
the droplet. Figure 6a also shows evidence of subsequent bunches
being admitted as the field is increased further.

The variations in brightness of the traces in Fig. 6a arise
from differences in the probability for electron tunnelling
between the artificial atom and the nearby metal**?2. The dim
and bright regions of the traces result respectively from low and
high tunnelling probabilities. One may interpret the tunnelling

Magnetic field (T)

FIG. 6a, Colour-coded image from a SECS experiment. The numbers
labelling each trace signify the number of electrons in the artificial atom.
The white circle indicates the magnetic field value at which all of the
electrons fall into the lowest Landau level. The arrows point to the spin flips
of individual electrons in the dot. The last arrow on the right marks the field
at which the electrons in the dot become spin-polarized. The triangles
indicate the field values at which ‘hole bunches’ are created within the dot.
b, Schematic diagram of the hole-bunch creation process. The black
regions depict areas of the dot which are populated with electrons.
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probability as the willingness of the electrons of the artificial atom
to make room for another electron. The tunnelling probabilities
are enhanced at the positions where hole bunching occurs. They
are instead diminished for magnetic fields at which HF calcula-
tions predict no holes in the interior of the artificial atom, such as
beyond the rightmost arrow in Fig. 6a (at around 4.5 T) when the
electrons in the artificial atom become completely spin-polarized.

Although the HF calculation captures the essence of the hole-
bunch creation, it ignores the effect of electron correlation on the
Coulomb repulsion. Exact diagonalization and other” calcula-
tions attempt to take these correlations into account. These
suggest an even richer behaviour in the spectra as we move to
higher magnetic fields and more detailed measurements.

Future research

The study of artificial atoms is a widely expanding research area.
At present, the prospect of understanding electron correlations in
a simple system has been a driving force for much of the
theoretical work. All of the measurements discussed in this
Review describe the spectroscopy of the lowest available energy
levels of the artificial atoms. Measurements of excited states 244
constitute another class of measurements which may also yield
significant information on the effects of correlations*>*

An exciting new field of research is emerging. Artificial ‘mole-
cules’ consisting of two or more closely spaced artificial atoms are
now being created**> and studied theoretically*®¥’. These are
typically structures similar to those of Fig. 2a, but which contain
more than two or more dots. In some sense, these specimens are
the first step toward artificial solids made of large arrays of linked
dots®. Many of the key characteristics of real solids and real
molecules, such as their magnetic and optical properties, and
whether they are insulators or metals, depend largely on the
strength of the couplings between the atoms. Unlike natural
molecules, the strength of interactions between the neighbouring
artificial atoms in artificial molecules can be varied at will (tuned)
by varying the voltages on electrodes. The exciting feature here is
that researchers may learn to engineer desired properties into
artificial solids simply by tuning electron voltages that control the
coupling between artificial atoms.

With the creation of the artificial atom, the ultimate limit of
small-sized electronics is being achieved. So far, artificial atoms
have allowed us to test the effects of interactions between
electrons in an unprecedented way. An open question remains
the practicality of using the ability to manipulate and trap single

electrons for electronic devices. A device similar to that of Fig. 2a
and known as the single-electron transistor (SET) has demon-
strated spectacular sensitivity for sensing of electrical charge®,
and there have been suggestions for using either SETs® or
artificial atoms themselves’' as computing devices. Until recently,
all single-electron devices functioned only at extremely low tem-
peratures. Now, two novel structures™ for single-electron tran-
sistors have been produced in silicon, unlike the gallium arsenide
structures discussed in this Review. They both clearly display
room-temperature operation. The smaller a single-electron
device can be produced, the larger the energy for single-electron
charging, and the higher the operation temperature. It turns out
that advanced silicon processing, chiefly the ability to produce
controllably very thin silicon oxide layers, facilitates the production
of extremely small artificial atoms.

Despite these recent improvements in the operating tem-
perature of the devices, two important problems remain. First, it
has not yet proven feasible to create devices with reproducible
thresholds for adding single electrons. Present digital logic sys-
tems require sharply defined thresholds for ‘on’ and ‘off” states of
a transistor. Second, single-electron devices are inherently low-
current structures, and there is a ‘fan-out’ problem: unlike con-
ventional transistors, the outputs of single-electron devices cannot
rapidly switch many other devices. Researchers are now learning
to circumvent both of these problems. For instance, schemes have
been devised for memory circuits that combine conventional
transistors and single-electron devices™. The method is insensitive
to variations in device thresholds, and hybrid designs utilizing
conventional transistors can defeat the fan-out problem. Because
single-electron devices are so small, huge numbers of them can be
packed in the space between conventional transistors on a chip.
Such an implementation might yield nearly a thousand-fold
increase in the storage density of a memory chip.

The work described in this Review has shown that researchers
can now routinely measure extremely small amounts of electrical
charge. In fact, it is now possible to measure a charge as small as
1/10,000 of an electron charge. Theory predicts that this number
might reach as low as 1/1,000,000 of an electron charge®. Such a
small charge might be induced on a single-electron device by a
small motion of a single, distant charge. We are just now learning
to make use of this extreme sensitivity. 0O
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