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We detail our results revealing a new energy gap present in the two-dimensional electron gas 2DEG).
The gap, seen in the tunneling spectrum of electrons in the 2DEG, develops only in the presence of a
magnetic field applied perpendicular to the 2DEG plane. The experiments discussed here consist of
measurements of electron tunneling between a 2DEG in a quantum well and an n* substrate using exci-
tation voltages less than kp T /e. At low temperatures and only with the magnetic field applied perpen-
dicular to the plane of the electron gas in the well, the tunneling rate develops an unusual temperature-
dependent suppression. The suppression strength is roughly independent of Landau-level filling for den-
sities 0.5X 10" cm™ to 6X 10! cm™2, At low temperatures the application of an additional ac excita-
tion voltage, with amplitude larger than k7, increases the tunneling conductivity. Using large enough
excitation, the tunneling conductivity returns to its high-temperature value. This behavior suggests the
existence of a magnetic-field-induced energy gap, at the Fermi level, in the tunneling spectrum of elec-
trons in the 2DEG. The 2DEG density can be tuned continuously in our samples. Oscillations are seen
in the tunneling conductivity as the 2DEG density is varied, consistent with Landau-level structure ob-
served in magnetocapacitance measurements on the same sample. While the amplitude of the magneto-
capacitance structure is a strong function of temperature through the temperature range down to below
1 K, strikingly, contrast in the oscillations in the tunneling rate ceases to develop as the sample tempera-
ture is decreased below the width of the gap. In other words, the presence of the gap appears to blur
density-of-states features of energy width smaller than the gap width. At zero magnetic field no temper-
ature dependence of the tunneling is observed except at 2DEG densities below 0.5X 10! cm ™2, At these
low densities, the tunneling conductivity is also suppressed as the temperature is lowered. We believe
that this suppression arises due to an energy gap caused by localization effects. For the lowest densities,
this gap is likely a manifestation of the Coulomb gap. Interestingly, both the magnetic-field-induced en-~
ergy gap and the gap observed at low densities lead to similar temperature dependencies of the tunneling

conductivity.

I. INTRODUCTION

The two-dimensional electron gas 2DEG) in semicon-
ductors has been studied in great detail using a number of
experimental probes. The work presented here is unique
in that it probes the tunneling density of states (DOS)
around the Fermi energy of the 2DEG in the presence of
a quantizing magnetic field. Until recently, the technique
presented here and described briefly in Ref. 1 was the
only method for studying zero bias tunneling from the
2DEG in semiconductors. In the last two years, two
techniques which allow independent contact to a 2DEG
in the proximity of a tunnel barrier have been developed
by Smoliner et al.? and Eisenstein et al.®> The results
presented in this paper grew from a study intended to
probe the modification of the density of states in the 2D
electron gas produced by a magnetic field perpendicular
to the plane of the gas, a measurement of “the Landau-
level DOS at the Fermi level.” The technique used pro-
vided two independent measures of the DOS, one a
Landau-level DOS determined using magnetocapacitance
measurements and explored elsewhere, 43 the other a tun-
neling DOS described here. The experiment extends ear-
lier capacitance spectroscopy of the Landau-level DOS
(Ref. 6) to lower temperatures and, most importantly,
also measures the tunneling conductivity between the 2D
gas and an n © substrate.

It differs as well from other tunneling measurements”®
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which determine an I-V¥ characteristic. In our experi-
ment, the Fermi energy in a quantum well is varied in a
controlled fashion by application of a gate voltage, and
the Fermi energies on both sides of the tunnel barrier are
kept within k5 T of one another. We measure the equilib-
rium tunneling conductivity as a function of the Fermi
energy in the well, not the more usual differential conduc-
tivity as a function of the difference in Fermi energies
across the barrier.

The experiment shows, in addition to the structure ex-
pected from the development of Landau levels, an unex-
pected suppression of the electron tunneling which is
greater than an order of magnitude at a field of 8 T and a
temperature of 100 mK. We interpret these data as evi-
dence for the development of a new magnetic-field-
induced energy gap forming at the Fermi energy of the
2D gas.!

This paper is divided into two parts. First we explore
the temperature dependence of tunneling data taken in
the presence of magnetic field perpendicular to the plane
of the 2D electron gas. We then turn to data taken in the
absence of magnetic field. Unlike the data taken in the
presence of magnetic field, these data show no tempera-
ture dependence except at low electronic densities in the
well ( <5X 10!° cm™2), where the data again reveal a tun-
neling suppression as the temperature is lowered.
Strangely, the two different tunneling suppression effects
have similar temperature dependencies. This similarity
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48 ENERGY GAPS OF THE TWO-DIMENSIONAL ELECTRON GAS...

may indicate that related physical mechanisms are re-
sponsible for the tunneling suppression in the two cases.
At the tend of the paper, we offer a possible explanation
for the suppression effects seen at low density as well as
speculations regarding the suppression effects induced by
a magnetic field.

II. SAMPLES AND METHOD

Mesas etched from three wafers grown using molecular
beam epitaxy have been studied. The essential structure
of the wafers is shown in Fig. 1{a). The three wafers, A,
B, and C, are described in Table I and in further detail
elsewhere.® Also, tunneling measurements on sample A
have been described in previous publications. 1! Each
wafer consists of a degenerately m-doped substrate in
GaAs, an Al Ga,;_, As tunnel barrier, a GaAs quantum
well, a thick nonconducting (blocking) Al ,Ga,_, As bar-
rier which in wafers A and C contains an n-doped layer,
and a degenerately doped GaAs surface contact region.
In all wafers, only the lowest electronic subband of the
well is occupied. The electron density in the quantum
well can be varied by the application of a gate bias across
the sample. The data presented in this paper concentrate
mostly on the results from sample A; over 200 000 capac-
itance measurements were taken on one 400-um-diam
mesa produced on this wafer.

The geometry of our samples precludes us from direct-
ly measuring the 2DEG mobility. However, elastic
scattering times in the well can be estimated in the three
wafers from the widths of the DOS ?eaks of Landau lev-
els in a magnetic field.!? Elsewhere,*> we have measured
the Landau-level DOS using magnetocapacitance mea-
surements. Because the Landau-level DOS peaks fit well
to Lorentzian line shapes, we can estimate elastic scatter-
ing times, and hence nominal sample mobilities from the
half-width T of the Lorentzian line shapes, r,=#/T.
This formula gives a nominal 2.0-K mobility of approxi-
mately 21 0000, 25 000, and 15000 cm? V™ 1sec™! for the
wafers A, B, and C, respectively. Actual transport
mobilities are expected to be substantially higher (.e.,
factor of 10).!* Evidence for a magnetic-field-induced en-
ergy gap in the 2DEG has been observed in all three sam-
ples.

Tunnel barriers in our samples can be regarded as
capacitors shunted by a tunneling conductance. These
were designed to have RC times which lie within the
range of our measurements. The capacitance and the loss
tangent of patterned mesas were measured at 20 frequen-
cies between 15 Hz and 30 kHz. Low-pass filtering® was
employed on sample leads to reduce any noise that might
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FIG. 1. (a) shows the essential structure of the samples. Tun-
neling from the GaAs quantum well to the substrate across the
AlGaAs tunnel barrier is observed by means of capacitive cou-
pling through the thick nonconducting barrier. (b) displays a
simplified model of the sample.

cause spurious voltage excitation across the tunnel bar-
rier. The loss tangent displays a Debye line shape which
peaks, and concurrently the measured capacitance de-
creases, as the measuring frequency is swept through
1/27RC. The behaviors of the capacitance and the loss
tangent in sample B as a function of frequency are shown
in Fig. 2. We name low- and high-frequency limiting ca-
pacitances Cjoy and Cy,y, respectively.

Figure 1(b) shows the model which we use to charac-
terize our set of capacitance and loss tangent versus fre-
quency data. The data can be fit with suitable choices for
the three circuit elements shown. If the thermodynamic
DOS, 16 31 /3u (see Appendix), in the well were
infinite, the value of the conductance (resistor shown in
the figure) obtained by these fits would be the tunneling
conductance. With a finite DOS, this correspondence no
longer holds; the capacitances shown in the model de-
pend both on sample dimensions and the thermodynamic
DOS in the quantum well. *>

The Appendix of this paper presents an analysis of
charge equilibration in our devices. This work yields the
frequency-dependent impedance of our samples in terms
of the tunneling rate of electrons from the substrate to
the quantum well. The sample capacitance as a function
of frequency takes the form

Chighclow[ 1+ (f/fgeak )2]7
Chigh + Clow(f /fpeak )2

where f..x is the frequency at which the loss tangent
achieves a peak. The tunneling conductance can be ex-

) (1)

C(f)=

TABLE I. Growth parameters for the samples.

Si dopants Dopant
GaAs spacer Tunnel Blocking (from wgll concentration
Sample layer (A) barrier (A) barrier (A) edge) (A) (cm™3)
A 30 160 1550 100-200 5x10Y
B 30 133 800 no dopants no dopants
C 150 150 800 150-500 6x 10"
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FIG. 2. Capacitance (squares) and loss tangent (crosses) of a
200-pum mesa etched on sample B. The solid and dotted curves
are fits from the circuit model presented in Fig. 1(b). At low fre-
quencies, electron transfer from the substrate to the well can
take place, and the capacitance C),, is measured. At frequen-
cies high compared to the inverse RC time of the tunnei barrier,
no electron transfer to the well takes place, and the measured
capacitance Cy,, drops to a value consistent with the distance
from the top gate to the substrate layer.

tracted from the three fitting parameters Cy,,,, Cyigp, and
S peax Using the relation

C C
— geom low
Gtun =27 peak Cgeom m Crun 1] . (2)

Cgeom> described elsewhere,*” is the “geometric” capaci-
tance between the 2DEG and the substrate 3DEG (i.e.,
the capacitance between these two layers if the density of
states in the 2DEG were infinite). The value of Cieom
used here is extracted from other measurements and is
known to within 29%.%% We now discuss the results of a
series of experiments in which the tunneling conductivity
is measured in magnetic field applied perpendicular to the
plane of the 2D electron gas as a function of the electron
density in the quantum well, the temperature of the sam-
ple, and the magnetic-field strength.

III. TUNNELING
IN THE PRESENCE OF MAGNETIC FIELD

Figure 3 displays the logarithm of the tunneling con-
ductivity of sample A at 4 T for different temperatures.
The highest-temperature curves oscillate about the zero
field curve,® indicating the development of Landau-level
structure in the DOS in the 2D gas. At lower tempera-
tures, the tunneling conductivity is strongly suppressed.
In contrast with this behavior in magnetic field, the zero
field tunneling conductivity shows no substantial varia-
tion with temperature over the range 90 mK-—-10 K ex-
cept for electron densities near full depletion ( <1X 10!
cm™?). The temperature-dependent suppression occurs

FIG. 3. Tunneling conductivity in sample A (log scale) vs
electron number density in the quantum well for zero field (bold
solid curve) and for a variety of temperatures with 4.0-T mag-
netic field applied perpendicular to the plane of the electron gas
in the quantum well. The minima at densities of 2 10!! and
4X 10" cm™? correspond to Landau-level indices of v=2 and
v=4, respectively. The smooth curves joining the points are
guides to the eye.

only in the presence of the magnetic field applied perpen-
dicular to the plane of the 2D electron gas; a magnetic
field applied parallel to the plane, !° though changing the
shape of the tunneling conductivity versus 2DEG density
curve, does not induce a temperature-dependent suppres-
sion. We note that the doping levels in the substrate are
high enough (107 cm™) to discount magnetic
freezeout!” as the cause of the effect. Finally, the
Landau-level DOS in the well, as determined from the ca-
pacitance values distinct from conductivity results, shows
no unexpected behavior reflecting the tunneling suppres-
sion.

The temperature dependence suggests that the suppres-
sion is due to a tunneling anomaly restricted to energies
near the Fermi energy. To explore this idea, a high-
frequency signal (period shorter than the RC relaxation
time of the tunnel barrier) was injected across the sample
during capacitance measurements. This signal provides
an oscillating Fermi-level offset between the 2D gas and
the substrate, allowing tunneling to occur from a band of
states of width given by double the amplitude of the in-
Jjected signal. We find that as the excitation voltage that
appears across the barrier due to the injected signal is
made larger than kzT /e, the suppression effects induced
by the low temperature of the sample recede. At very
low temperatures, where the suppression appears to be
saturated, the effect of excitation, of rms amplitude V,,
on conductivity is roughly the same as increasing the
temperature in absence of excitation to a value eV, /kg.
This implies that the suppression would be observed in a
conventional 7-¥ characteristic as a zero bias anomaly,
not as a general bias-independent suppression.
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The data shown in Fig. 3 are striking in that the
suppression depends in a substantial way neither on the
electron density in the well over a concentration of
(0.5-6)% 10" cm™?2 nor on whether the Fermi level is at
2 maximum or minimum in the Landau-level DOS
despite a ratio of the maximum to minimum DOS of
about 10:1.%°

In Fig. 3, tunneling at densities higher than 3.9 X 10!!
cm ™2 should be forbidden in the absence of scattering.
At these densities, the Fermi level is in the third Landau
level in the well, whereas in the substrate the third Lan-
dau level lies outside of the Fermi surface. Indeed, the
tunneling conductivity is markedly lower in this range of
density. Interestingly, the strength of suppression due to
the magnetic field is approximately the same in the for-
bidden region as it is in the range of densities for which
tunneling is allowed. This observation suggests that the
suppression is not some consequence of the change in
spatial character of the one-electron wave functions asso-
ciated with the development of Landau states.

The data of Fig. 3 also display another interesting
feature. As the sample is cooled from the highest tem-
peratures, Landau-level structure begins to develop.
Strangely, below around 7 K, the amplitude of the
Landau-level oscillations ceases to develop further. In
contrast, magnetocapacitance measurements show in-
creasing amplitude of Landau-level structure down to
temperatures below 1 K. Moreover, at low temperatures
the ratio of the tunneling conductivity at a Landau max-
imum to that at a Landau minimum is about 2:1 while
the Landau-level DOS measurements, as derived from ca-
pacitance results, % reveal a nearly 10:1 ratio below 1 K.
It is suggestive that the amplitude growth of the conduc-
tance oscillations ceases at the same temperature at
which the tunneling suppression effect commences.

For completeness, we show tunneling conductivity
versus number density curves in the same sample for
different magnetic-field strengths. Figure 4 displays the
tunneling conductivity at various temperatures for a 2.0-
T applied magnetic field. The tunneling suppression here
appears to be weaker and sets in at lower temperatures
than for the data in Fig. 3. For data taken at 8.5 T,
shown in Fig. 5, strong suppression commences at higher
temperatures than for the data of Fig. 3. In Fig. 5, the
first two peaks that appear in the tunneling conductivity
correspond to the spin split bands of the lowest Landau
level. At 8.5 T, the second Landau level in the substrate
is outside of the Fermi surface, and tunneling at electron
densities above 4.1X 10" cm™2 should be forbidden.
Once again, despite the sharp decrease in the tunneling
conductivity as the electron density is increased into this
forbidden region, the temperature-dependent tunneling
suppression still persists.

Figure 6 displays the tunneling conductivity of sample
B at 4 T and at 1.9 and 4.2 K. The same suppression
effect occurs in this sample as in sample A. Notice that
while there is some increased definition of the Landau
level as the temperature is decreased, the suppression
strength is again roughly independent of the 2D electron
gas density. As with the data of sample A, on average
the conductivity at 1.9 K is again about 20-30 % less
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FIG. 4. Tunneling conductivity in sample A vs electron
number density in the quantum well at 2-T magnetic field ap-
plied perpendicular to the plane of the electron gas in the quan-
tum well. The oscillations here correspond to spin-degenerate
Landau levels, the first peak shown being the lowest level.

than the conductivity at 4.2 K. We have data in sample
C only at temperatures of 4 K and near 6 K. The
suppression effect is observed in this sample as well al-
though it is somewhat less apparent because, as with sam-
ple A in this temperature range at this magnetic-field
strength, the strength of the suppression is small and
there is at the same time considerable temperature depen-
dence of the Landau-level widths.
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FIG. 5. Tunneling conductivity in sample A vs electron
number density in the quantum well at 8.5-T magnetic field ap-
plied perpendicular to the plane of the electron gas in the quan-
tum well. The first two peaks shown as the density is increased
are the spin split levels of the lowest Landau level. Note that the
vertical scale is different here than in Figs 3 and 4.
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FIG. 6. Tunneling conductivity vs number density in sample
B at a magnetic field of 4.0 T. The suppression effect is clearly
visible in this sample. Also apparent is the spin splitting of the
Landau levels which becomes increasingly prominent as the
temperature is reduced. The minimum at density 2 X 10!! cm™?
corresponds to Landau-level index v=2.

IV. AVERAGE CONDUCTIVITY

Figure 7 gives a global summary of our results from
sample A. The data points give A(T;B), the average of
the ratio of the tunneling conductivity at temperature T
and field B io the conductivity at temperature T in zero
field. The averaging is over a range of energies corre-
sponding to a filling of the well spanning a half integral
or integral number of Landau levels. The averaging is
needed to isolate changes in the tunneling conductivity
arising from the tunneling suppression from changes in
the conductivity due to varying detail in the Landau-level
structure, such as increased contrast or the appearance of
spin splittings, which develops at the lower temperatures.

There is a subtlety involved in determining the average
value of the tunneling conductivity. The average of the
conductivity must be taken with respect to the Fermi en-
ergy in the well, not with respect to the carrier density in
the well, to assure that changes in contrast of the
Landau-level structure, important only at the highest
temperatures, do not contribute to an apparent but un-
real change in the average of the tunneling conductivity.
The conversion between well filling (nearly proportional
to the gate voltage) and Fermi energy is accomplished us-
ing magnetocapacitance data.*>

We choose to characterize our results in terms of a
“tunneling density of states” g.(E;B) which reflects the
effects of the magnetic-field suppression and a tunneling
rate 1/7,,(E) which is assumed uninfluenced by the
magnetic field and to vary with energy slowly on the scale
of kyzT. At zero temperature, the tunneling conductivity
of the sample would be

_ .8(EpB)

G(I'=0;B;Eg)=e = (3)

Ttun
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FIG. 7. Plotted as symbols are the averaged conductances
relative to the high-temperature limit of the conductance plot-
ted against temperature (log scale). The smooth curves are fits
described in the text. Shown in the inset is A in kelvins plotted
against the applied magnetic field. The line is given by
A=0.047#w, /kz.

At finite temperature, the g,(E ; B) in Eq. (3) should be re-
placed by a suitable thermal average'® to give, for the
conductivity,

2 .
G(T;B;Ep)=——23 fowgs(E;B)é%l%—QdE , (@)

Ttun(EF)

where f(E;T) is the Fermi distribution function, E is the
kinetic energy of electrons in the 2D electron gas, and Ep
is the Fermi energy in the well measured with respect to
the bound-state energy in the well.

The data points in Fig. 7, in this framework, corre-
spond to the experimental values represented by

» 8(E;B .
gl )Aaf,(E,T)dE7

MEBI==] — (@  oE

(5)

where g,(E) denotes the tunneling DOS in the absence of
magnetic field. For all but the 8.5-T data, A(T;B) at
high temperatures approaches a well-defined value of one
which is taken to be the high-temperature limit. Ambi-
guities of interpretation at high temperature imply a 10%
uncertainty in the normalization of the 8.5-T data.

For interpretation of the results we model the data
with g (E;B), containing a gap, of the form

(1—S)golE —E/|

g:(E;B)=Sg,+ x

(E<24),

(6)
g&(E;B)=g, (E>2A),

with go(E)=g,, independent of E. The smooth curves of
Fig. 7 are generated from Eq. (5) using this “linear” gap
with a tunneling density of states S at the Fermi energy
and width A depending on B.

" We call attention to a few principal features of the
summary data in Fig. 7 and of the fits. (a) For low fields,
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1 and 2 T, the width parameter A depend little on B, but
the depth of the gap (1—S) increases with increasing
field. (b) For high fields, 6.5 and 8.5 T, the gap is nearly
fully developed in depth and the width is increasing with
field, with some indication of saturation at high fields. (c)
The data at 4 T and below consistently show more tem-
perature dependence in the low-temperature limit than
do models in which the gap is nonsingular at the Fermi
energy, e.g., square or smooth bottomed gap functions.
At the fields of 6.5 and 8.5 T, the data deviate from the
fits at low temperatures, displaying a weaker temperature
dependence than would be suggested by the linear gap
model. This may indicate a “flattening” of the gap’s
minimum (hardening of the gap) as it saturates in depth.
(d) At fields 2 T and higher, the gap width A has a value
of about 5% of the cyclotron energy, fiw. (see inset to
Fig. 7).

We interpret the results in terms of a gap, rather than
of an influence of the field on the single-particle tunneling
dynamics, because the temperature and excitation depen-
dencies indicate that the tunneling is suppressed only for
states near the Fermi energy. Before discussing possible
candidates for such a gap, or other proposals, we turn
first to another tunneling suppression that we have ob-
served.

V. LOW-DENSITY TUNNELING SUPPRESSION
IN THE ABSENCE OF MAGNETIC FIELD

As noted above, in the case of zero magnetic field or
magnetic field parallel to the plane of the 2D electron
gas, no temperature-dependent tunneling suppression is
observed for most of the range of densities of the 2D elec-
tron gas. However, temperature dependence is observed
at densities below =~0.5X10!' cm™2. Figure 8 displays
the tunneling conductivity (obtained in a model described
in the next section) in sample A as a function of device
gate bias for sample temperatures ranging from 95 mK to
16 K. The shape of this curve at densities above
1.2X 10" ¢m™? has been explained previously in terms of
momentum conservation rules in tunneling.”!! For gate
voltages above about —800 mV (about 1X10' cm™2
mean well density as determined from magnetic-field
measurements), low-frequency capacitance measurements
indicate that the quantum-well area is fully occupied. At
voltages below —800 mV a significant temperature
dependence of the conductivity appears. As in the case
of perpendicular applied magnetic field, the tunneling
conductivity is suppressed as the temperature is de-
creased. Similar suppression at low densities has been ob-
served as well in samples B and C. The technique used to
plot the tunneling conductivity here differs at low densi-
ties from that used in previous figures. The next few
paragraphs describe the differences as well as why a
different method is needed in the low-density limit.

A. Capacitance versus frequency curve fitting
in the low-density regime

Equation (2) above yielded the tunneling conductivity
of samples in terms of the loss peak frequency and the
low- and high-frequency capacitances of the device. This
relation, as well as the framework used in developing it,
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FIG. 8. Tunneling conductivities (linear scale) in zero mag-
netic field vs gate voltage in sample A at temperatures ranging
from 95 mK to 16.1 K. Note that at a gate voltage of —800 mV,
the electron density is about 1X 10! c¢cm™2 and rises linearly
with gate voltage to a value of around 6 X 10!! cm™? at a gate
bias of 400 mV. Below —800-mV gate bias, the quantum well
begins to depopulate nonuniformly, leaving unoccupied regions
of the well. In this region, the electron density is no longer
linear in gate bias, and the rate of electron density change with
gate bias is decreased. The conductance is obtained from the
capacitance data using the “puddling” model described in the
text.

400

breaks down at low electron densities in the well if there
are portions of the well unoccupied by electrons. Experi-
mentally, a decrease in the low-frequency capacitance of
the device is observed as the gate bias is lowered in the
low-density region. We explore here reasons for this de-
crease and develop interpretations of the capacitance and
loss data in the low-density regime.

We proceed to model the sample with low densities in
the well using the assumption that occupied and unoccu-
pied regions of the sample are larger than a few hundred
angstroms in size so that fringing fields can be neglected.
Because there are unoccupied regions of the well, a ca-
pacitance shunting the top gate to the substrate must be
added to the circuit model of Fig. 1(a). We note that, in
the absence of electrons in the quantum well, the sample
capacitance is equal to Cy;g. The shunting capacitance
in the model then has a value of C,;,(1—a) where « is
the fractional area of the 2D electron gas which is occu-
pied by electrons. This sample model is shown in the in-
set of Fig. 9. The division of the device this way into two
regions, one depleted and the other filled with electrons,
gives the form

ACyigh Cx [ 1+ (S /f pear 2]
Chigh + Cx(f /f pear )*
for fits to capacitance versus frequency curves. The pa-
rameter C, is the capacitance that would be measured at

low frequencies if the well were fully occupied. The mea-
sured low-frequency capacitance C, ,, is given by

ClOW =aCx +(1 —-a)Cmgh .

C(f)= +(1—a)Ch,gh @
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FIG. 9. Displayed is the fractional areal occupation of the
quantum well, &, as determined from capacitance vs frequency
curves fitted by Eq. (7) and the model of Fig. 14. The solid
curve is a guide to the eye. Inset: The circuit model used to fit
capacitance vs frequency curves taken in the low-density region
of the device operation. The capacitance on the right,
(1—a)Clgy, is the capacitance measured from unoccupied re-
gions of the quantum well. The two capacitor model on the left
corresponds to the regions in the quantum well which are occu-
pied by electrons.

At this point, fits can be made to the capacitance data us-
ing Cjow, Chigns @, and f ., as fitting parameters.

Attempts to make such fits show the experimental ac-
curacy inadequate to define independently values of «
and of C.. Instead we consider two limiting cases of the
model. In the first we set @=1; the model considers the
system to be a uniform 2DEG and all changes in device
capacitance are attributed to variations in the DOS in the
well which will be reflected in variations of the fitting pa-
rameter C,. We call this the “filled well” model.

In the second case, the “puddling” model, we use Eq.
(7) and fix the value of C, as follows. We observe that for
gate biases corresponding to the well surely full, the ratio
Ciow/Chign is very nearly independent of gate bias (in the
absence of magnetic field). We take that value to
represent the ratio C, /Cy;,y, for the filled areas (puddles)
of the well by assigning the value (C,/Clign)puqdes
=(Clow/ Chigh ) wen determined from data with full oc-
cupation of the well.

We have chosen to use the puddling model for several
reasons. (a) Using the filled well model leads to conduc-
tivity versus gate bias curves in which the tunneling con-
ductivity falls very rapidly at low densities, much faster
than does the device capacitance at low densities. This is
in strong contradiction with the simplest model in which
the conductivity depends only on the DOS in the well,
and would require major modification by interaction
effects. (b) Data analysis leaving both a and C, as free
parameters, though ambiguous, favors the puddling mod-
el. (c) The puddling model is a commonly used model'®
for treating heterojunctions near full depletion.

We restrict our attention now to the puddling model
with the caveat that, in reality, we expect a decrease in
conductivity at low density both because of band tailing
(the filled well model) and because of full depletion of
some areas of the sample (the puddling model).

The tunneling conductance is easily evaluated in the
puddling model as

G iun =27 f pearc @C Ceom S 4. (8)
tun peak geom \/-CXThlgh Chigh

Of course, what is interesting physically is not the total
conductance, but the conductance per unit filled area,
which is this formula divided by the quantity a 4, where
A again is the area of the mesa.

B. Detailed observation of low-density tunneling conductance

We use the puddling model framework to plot in Fig.
9, a, the fraction of the area of the quantum well which is
occupied as a function of gate bias. The curve was ob-
tained from data taken in zero magnetic field and at 1.85
K. We have fitted data of capacitance versus frequency
from a variety of temperatures from 95 mK to 16 K and
see little change in this curve. Within the resolution of
these results, we observe no thermal smearing of the a
versus bias curves up to the highest temperatures. In the
following discussion we treat the occupied area and elec-
tron density as fixed at a particular gate bias, independent
of sample temperature.

Figure 10 “zooms in” on the tunneling conductivity,
determined in the puddling model, in the low-density re-
gion of sample A as a function of gate bias for tempera-
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FIG. 10. The figure displays in detail the tunneling conduc-
tivity (conductance per unit occupied area) determined using
Eqgs. (7) and (8) for a variety of temperatures between 95 mK
and 16.1 K. Two features of the plot stand out. First, there ap-
pear to be low- and high-temperature limiting values to the con-
ductivity. The transition between these two values always
occurs at between 0.5 and 3 K, independent of gate bias.
Secondly, an unexplained plateau develops at low temperatures
in the conductivity at biases below — 1050 mV.
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tures from 95 mK to 16 K. The temperature dependence
is immediately siriking. For the whole region of gate
biases plotted, above around 7 K the conductivity satu-
rates to a high-temperature limiting value; below about
500 mX the tunneling conductivity saturates to a low-
temperature value. For the entire curve, most of the shift
of the conductivity with temperature happens between 1
and 3 K. Another striking feature in Fig. 10 is the pla-
teau which develops in the conductivity at low tempera-
tures. The reason for this plateau, as well as the rest of
the shape of the tunneling conductivity plot as a function
of gate bias, is not understood.

C. Low-density conductivity as a function of temperature

At this point, we note the similarity of the temperature
dependence of the tunneling conductivity at low densities
to the tunneling suppression induced by a magnetic field
illustrated in Fig. 7. In the case of the low-density data,
we simply take the conductivity at a particular value of
gate bias and plot it as a function of temperature. Figure
11 displays the conductivity relative to its high-
temperature value plotted as a function of temperature
for a gate bias fixed at —1050 mV. The resemblance of
the shape of this curve to the curves of Fig. 7 is readily
apparent. The solid line is a fit to the data obtained using
Egs. (5) and (6), the same gap function used to fit the
magnetic-field data. In Fig. 11, A has a value of about 4.7
K, and the gap depth parameter S has a value of 0.4. By
adjusting the values of A (which undergoes only slight
variations with gate bias in the low-density regime) and .S
the gap model of Eq. (6) can be made to fit the data well
for all but the lowest gate biases in the low-density re-
gion. We will return below to this similarity in the tem-
perature dependencies of the two suppression effects.
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FIG. 11. Plotited as boxes is the conductivity from Fig. 10 at
— 1050 mYV plotted as a function of temperature (log scale). The
solid curve is a fit using Eq. (5) and the same “linear gap’ of Eq.
(6) that was used to fit the magnetic-field-induced suppression.
The fit has A adjusted to a value of 4.7 K.
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VI. LOW-DENSITY REGION
WITH MAGNETIC FIELD APPLIED

Now that we have examined in detail both the suppres-
sion of tunneling by magnetic field at high densities and
the suppression at low densities in zero magnetic field, it
is interesting to ask, what happens at low density in the
presence of a magnetic field? We again use the puddling
model of the preceding section to fit the capacitance data
and extract the tunneling conductivity.

Figure 12 displays the conductivity of sample A at a
temperature of 290 mK at magnetic fields ranging from O
to 8.5 T. At the highest fields, the magnetic-field conduc-
tivity suppression is still very strong at these low electron
gas densities, and the 6.5- and 8.5-T curves remain well
below the O-T curve over the full range of gate biases
shown. The data from lower fields show an intriguing
behavior. At higher gate bias values in Fig. 12, the 1-
and 2-T curves fall below the zero field curve due to the
magnetic-field suppression. As the gate bias (and thus
the average electronic density) is reduced, the low field
curves merge at a certain gate bias with the zero field
curve and then follow along the zero field curve as the
gate bias is reduced further. This same behavior persists
at a variety of different temperatures. Further, the curve
at 2 T always merges with the zero field curve at gate
biases between —950 and —975 mV, independently of
the temperature.

The magnetic-field conductivity suppression at low
densities has an electronic density dependence, unlike the
suppression effect at higher densities. This density
dependence provides a strong indication that the source
of the field-induced conductivity suppression lies in the
2D electron gas and not in the substrate. Further, the
merging behavior of the curves in Fig. 12 is suggestive

o
[Tel T T T
o~
2L _
o«
=
N
2
[T =] L
g
o
o,
2
58t
-06-—
3
c
8
8 r
o 1 —l ) —
=1200 —-1100 —1000 —300 —800

Gate Voltage (mV)

FIG. 12. Tunneling conductivity as a function of gate bias for
different magnetic-field values at 290 mK. Notice that the
curves taken at higher magnetic fields are significantly
suppressed below the curve at zero field. Curves taken at 1 and 2
T display an interesting merging with the curve taken in ab-
sence of field as the gate bias is reduced.
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that three regimes exist, a high-density regime where the
magnetic-field suppression dominates, a low-density re-
gime where the low-density suppression dominates and a
crossover regime which is where the curves merge togeth-
er.

VII. SPECULATIONS
REGARDING POSSIBLE CAUSES
FOR THE SUPPRESSION EFFECTS

We briefly review the main characteristics of suppres-
sion effects in the tunneling conductivity described above.
A magnetic field, only when perpendicular to the plane of
the 2D electron gas, produces a tunneling suppression
that can be characterized by an energy gap at the Fermi
energy in the 2D electron gas. We focus on the 2D elec-
tron gas as the source of the suppression for two reasons.
First, anomalies in the 3D gas should be present for arbi-
trary orientation of the magnetic field, but the suppres-
sion is observed only with the field perpendicular to the
2D gas. Second, density dependence of the suppression is
observed near depletion of the 2D gas, as described in the
preceding section, suggesting the properties of the 2D gas
as the source of the suppression effect. In the case of zero
applied magnetic field, tunneling suppression is again ob-
served at low densities of the 2D electron gas and can be
characterized by the same “linear gap” that fit the data
well in the case of the magnetic-field conductivity
suppression in low magnetic fields.

A. Tunneling conductivity suppression at low densities

We first focus on the low-density zero field suppression
because this low-density region of the 2D electron gas has
shown a number of interesting properties previously,
some of which are understood theoretically. Far-infrared
absorption experiments?® on the 2D electron gas in sil-
icon metal-oxide-semiconductor field-effect transistors
(MOSFET’s) at low densities (<4X10!' em™2) have
shown a frequency dependence of the electronic conduc-
tivity at photon energies below =~0.5 mV. These have
been explained by arguments invoking localization in a
disordered system.?! Also, in low-density inversion lay-
ers in silicon MOSFET’s, Bishop, Tsui, and Dynes?? have
observed a logarithmic temperature dependence in the
low temperature in plane conductivity of the 2D electron
gas which they interpret in terms of localization models.

Alishuler, Aronov, and Lee?® have suggested that lo-
calization effects should cause an energy gap to form at
the Fermi energy in the tunneling DOS in disordered sys-
tems. In the simplest heuristic model, this gap arises for
the following reasons. In a disordered material with a
background random potential, electrons eventually find a
configuration in which they minimize both their energy
with respect to the random potential and also the energy
associated with the electron-electron repulsion. Suddenly
adding or subtracting another electron forces the system
to rearrange and requires it to overcome energy hurdles
to find a new stable state. In two dimensions, Altshuler,
Aronov, and Lee predict that near the Fermi energy, this
gap should have the form
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Tunneling experiments have been done in both thin indi-
um oxide films** and in thin tin films.?® In both of these
experiments, the thickness of the films were varied to test
certain aspects of the theory. These measurements, in
cases where the films were thin enough to be considered
two dimensional, have shown the logarithmic behavior in
the tunneling conductivity as a function of the voltage
across the tunneling barrier (at voltages <20 mV) expect-
ed from the Alishuler-Aronov-Lee theory.

We note that the gap used in Fig. 11 is, like the
Altshuler-Aronov-Lee gap, singular (the derivative is
discontinuous) at the origin. Indeed, a singularity was
necessary to account for the low-temperature behavior of
the tunneling conductivity. We are tempted to propose
that the Altshuler-Aronov-Lee gap is the source of the
tunneling suppression at low densities in our samples.
However, there is a feature of the data of Fig. 10 incon-
sistent with this model. The temperature of the step in
the tunneling conductance is roughly independent of the
electron density, always lying in the range of 1 and 3 K.
This is in contrast with Eq. (9) which predicts that the
gap should deepen and widen as the Fermi energy is de-
creased. Lastly, we note that as the gate bias is reduced,
the system will at some bias move to the insulating side of
the metal-insulator transition. In this case, electrons are
fully localized, and it is more appropriate to speak of a
Coulomb gap.?®

B. Tunneling conductivity suppression by a magnetic field

At present, we have no clear understanding of the
mechanism which produces the apparent energy gap in
the tunneling DOS in a magnetic field. The simularities
between the temperature dependence of the low-density
suppression results in Fig. 11 and the magnetic-field re-
sults in Fig. 7 lead us to speculate that these two effects
might be different incarnations of the same underlying
physics. The main problem with interpreting the
magnetic-field results this way, however, is that one
would expect the strength of the gap to depend upon the
Landau-level DOS and/or the overall density; the
Landau-level DOS varies by more than a factor of 10 (at
the highest fields used here) as the Fermi energy moves
from the center of a Landau level to between Landau lev-
els. Our magnetic-field results instead indicate that the
«strength of the gap is independent of the position of the
Fermi energy within the Landau-level structure and is
roughly independent of electron concentration from
0.5X 10" t0 610! cm ™2

Aside from an energy gap, another proposal for the
cause of the tunneling suppression in magnetic fields is
the enhancement, by some mechanism involving the mag-
netic field, of the coupling of the tunneling transition to
other excitations of the system, e.g., phonons or
plasmons. The limiting value of the suppression at low
temperatures would, as observed, decrease with increas-
ing field as more tunneling oscillator strength is
transferred from the elastic to the inelastic channels.



There is no obvious candidate for the coupled excitation
which would need to have a characteristic energy of or-
der 0.5 meV in order to explain, even crudely, the tem-
perature dependence of the suppression.

A magnetic field applied perpendicular to a 2DEG ob-
viously induces electron correlations which can cause
dramatic results (e.g., the fractional quantum Hall effect).
At very low Landau-level filling fractions, a sharp in-
crease in the 2DEG transport resistivity has been attri-
buted to solidification of the 2DEG.?’ Electronic corre-
lations are the cause of the gap we observe at low densi-
ties in the absence of magnetic field. It seems likely that
correlations are also responsible for the gap at higher
fillings in the presence of magnetic field. It remains a
puzzle that unlike the fractional quantum Hall effect and
Wigner crystallization, the tunneling gap that we have
characterized is independent of the Landau-level filling
fraction.

Finally we mention a characteristic of the magnetic-
field data which may relate to the cause of the tunneling
suppression in magnetic field. The amplitude of the oscil-
lations due to the Landau-level structure is much smaller
in the tunneling conductivity than in the Landau-level
DOS. This is true for all three samples. At present, we
have no explanation for this effect. Qualitatively, it ap-
pears that the curves taken at lower magnetic-field values
(such as at 2 T), at the lowest temperature (well below 1
K), do achieve nearly the same 2:1 peak-to-valley ratios
that are seen in the Landau-level DOS measurement. At
higher magnetic-field strengths the 2:1 peak-to-valley ra-
tio is not surpassed in the tunneling conductivity even
though the Landau-level DOS results have much larger
(=10:1) peak-to-valley ratios.

We find it intriguing that Landau-level DOS and tun-
neling results show the same amount of contrast at high
temperatures where the Landau-level structure is nearly
washed out due to thermal broadening. As the tempera-
ture is decreased both the Landau-level DOS and the tun-
neling conductivity results develop contrast equally.
However, at some temperature (at around 7 K for the
data at 4 T shown in Fig. 3), the tunneling data cease to
develop contrast (or develop it only slowly) while the
Landau-level DOS continues to show more contrast as
the temperature is reduced. Interestingly, this bifurca-
tion takes place at temperature around 2A /kg, where A
is the gap parameter. We speculate that the development
of the gap may wash out features in the tunneling DOS of
energy width on order of the gap energy.

C. Comparison to a recent experiment

Very recently, Eisenstein, Pfeiffer, and West?® have
presented evidence from an experiment, in many ways
complementary to our own, confirming our prior observa-
tion! of the presence of a field-induced energy gap. They
have studied the tunneling between two 2DEG’s in a dou-
ble quantum-well structure in fields in the range of 8 to
14 T. The gap structure is observed in the same
geometry, magnetic field perpendicular to the plane of
the 2DEG, and is similar in magnitude to that discussed
here and in Ref. 1. This and other similarities between
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the two observed gaps lead us to conclude that the effects
seen in the experiment of Eisenstein, Pfeiffer, and West
are a manifestation of the same physics which produces
the gap seen in our measurements. This conclusion is at
odds with the discussion of Eisenstein, Pfeiffer, and West,
who suggest that different physics is involved. They offer
two arguments in support of this position.

Their first argument concerns the shape of the gap.
The Fisenstein-Pfeiffer-West experiment consists of a
measurement of the tunneling current between two paral-
lel 2DEG layers separated by a 175-A-wide tunneling
barrier. In the presence of magnetic field perpendicular
to the 2DEG layers evidence for a gap is manifested by a
sublinear I-¥ characteristic (¥ being the applied voltage
difference the two wells.) Eisenstein, Pfeiffer, and West
contrast their “broad energy gap” structure seen in I-V
characteristics with the linear gap model which we have
used. Two points must be recognized. First, an I-V
characteristic should not be directly contrasted with a
density-of-states model; rather the I-V characteristic in
their experiment will be given by the fold of the densities
of states in the two wells,

I(V)=—%

fOEVgS(E)gs(E —eV)dE . (10)

Ttun

A linear gap, g,(E)~ |E —EFI, will produce a cubic I-V
characteristic. A V> characteristic, while not following
the Eisenstein-Pfeiffer-West data precisely, gives a
reasonable fit. Second, there are no data in the
Eisenstein-Pfeiffer-West paper for fields below 8 T. As
most of our work has focused on the gap at fields below 8
T, it is difficult to make detailed comparisons.

They comment as well on the absence of a thermally
activated regime in our data. The data they present to il-
lustrate the thermal activation are at 13 T, well above our
highest measuring field of 8.5 T. The results certainly
point to a “harder” gap at this field. However, we again
note that the tunneling between two 2DEG’s each con-
taining a gap, contrasted with that in a system containing
a single 2DEG, will naturally appear to arise from a
“harder” gap. Without more detailed analysis of their
lower field results, however, it is an untepable leap to
conclude that the origins of the gap are fundamentally
different in nature.

Eisenstein, Pfeiffer, and West remark ‘“While we specu-
late that our high field results derive from a pure 2D sys-
tem, it seems plausible that theirs depend critically on the
interplay of disorder and interaction.” The results dis-
cussed in this paper at low concentrations do indicate
suppression effects related to disorder. These results also
indicate clearly that the crossover from disorder-
dominated suppression to field-dominated suppression,
the “smooth connection” hypothesized by Eisenstein,
Pfeiffer, and West, occurs at concentrations below
5% 10'° cm™2. Furthermore, though the 2DEG mobility
is expected to be at least ten times higher? in our sample
at a density of 6X10!! as compared with 1X10'' cm™2,
we observe ostensibly no dependence of the magnetic-
field-induced tunneling suppression on density in this

range. The fact that the tunneling suppression is not ob-
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served to vary as a function of Landau-level filling frac-
tion is another statement of this insensitivity to disorder.
As the filling fraction is varied, the localization length of
states at the Fermi energy varies tremendously. Thus the
magnetic-field-induced gap does not appear to depend on
the extent of electron localization over the very broad
range of localization lengths present in a Landau level.
Except at the lowest 2DEG carrier densities, disorder ap-
pears to have no relation to the gap structure that we ob-
serve.

Our current view is that the experiment of Eisenstein,
Pfeiffer, and West represents both a confirmation and an
important extension of our results to higher field. We
note also the two important advantages of our technique:
the ability to study the gap over a wide range of carrier
concentrations and in regimes in which the in-plane con-
ductivity of the 2DEG is very low.

VIII. SUMMARY

In summary, we observe two novel tunneling suppres-
sion effects in the tunneling of electrons between a 2D
electron gas and a 3D substrate. We have completed a
detailed study of the temperature dependence of these
effects. One of these, a tunneling suppression that occurs
only for low densities of the 2D electron gas, may be re-
lated to the energy gap seen previously in tunneling from
thin metal film systems and though to arise from
electron-electron interaction effects in the presence of dis-
order. The other tunneling suppression effect occurs over
a wide range of densities of the 2D electron gas in the
presence of a magnetic field perpendicular to the plane of
the 2D electron gas. This suppression can be character-
ized by a field-induced gap in the tunneling DOS tied to
the Fermi energy of width roughly 5% of #w,.
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APPENDIX:
EXTRACTION OF TUNNELING CONDUCTANCE
FROM CAPACITANCE DATA

1. Egquilibration of 2D and 3D charge densities

In this appendix we describe how fits to curves of ca-
pacitance and loss tangent versus frequency are used to
determine the tunneling conductance between the 2DEG
and the substrate. To understand this problem, we first
need to describe how the electron densities in the well
and the substrate, starting slightly out of equilibrium,
transfer electrons between one another through tunneling
to bring the two charge densities into equilibrium. Once
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the time constants for approaching equilibrium are
known, it is a simple matter to determine how the overall
divice impedance behaves as a function of frequency.
The device operation is more complicated than is sug-
gested by the circuit model of Fig. 1{b) due to the finite
density of states in the quantum well. In fact, both the
tunneling DOS, g,, and the thermodynamic DOS, g,,
must be taken into account to correctly deduce the tun-
neling conductance from the capacitance data.

Figure 13 shows the situation when the ‘“‘quasi-Fermi
level” in the quantum well Ep, is greater than the Fermi
level in the substrate, Ep,. We are interested in the quan-
tity Ep, —Ep,, as it describes the degree to which the
electron gases are out of equilibrium. Eg, is determined
by the sum of two components. One is the energy of the
bound state in the well with respect to the conduction-
band edge deep within the substrate. The other is the
width of the band of filled 2D electronic states within the
well which arises from the finite thermodynamic DOS in
the well. As the electronic charge in the well changes
both of these energies change. The Fermi energy in the
substrate (all energies here are measured with respect to
the band edge deep within the substrate) does not vary as
charge in the well is changed. Using terminology defined
below, we can write

d(EFw_EFs)szbound }Ldffw ) (A1)
dt dt gy dt

Upouna is the bound-state energy, o, is the number densi-
ty of electronic charge in the well, and g; is the thermo-
dynamic DOS at the Fermi energy. The inverse of the
thermodynamic DOS multiplies do,, /dt in Eq. (A1) be-
cause the equilibration of Fermi energies in the quantum
well and the substrate occurs on time scales fast com-
pared to the inverse of the measurement frequency. We
now define U, to be the energy of the conduction-band
edge in the well at the center of gravity of the ground-
state wave function containing the electrons in the 2DEG
in the well.

Quantum Well

Blocking Xw
Barrier

Substrate

Tunnel
Barrier

Uw+Eo-no | Usoung
T fj

FIG. 13. The figure shows the band diagram of the quantum
well, tunnel barrier, and the substrate with the electronic densi-
ty in the well slightly out of equilibrium with the electronic den-
sity in the substrate. The “quasi-Fermi level” in the well Ep, in
time relaxes so that it becomes equal to the Fermi energy in the
substrate, Ep,; as it changes, Upounaq also changes.
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Elsewhere, *® we have described the term 4, which is a
correction to the energy of the bound state in the well.
The bound-state energy is first considered using a sheet
charge model, and its value is taken to be U, + E, where
E, is a constant energy. Then a correction is made for
the finite width of the bound-state wave function so that
the bound-state energy is given by

Upound = Up T Eq—n0,, -

Here, the last term accounts for two effects. One is the
difference in the electrostatic energy of the bound state
associated with charge being distributed in the well rath-
er than in a sheet. The other is the quantum-mechanical
change in the bound-state energy due to the change of the
shape of the well bottom in the presence of charge as well
as exchange correlation effects.’® We can then write

dUhound . dUw
dt dt

do,
T (A2)

The tunneling current may be expressed in terms of a
tunneling DOS in the well g,, at the Fermi energy, and a
mean tunneling rate per electron of 1/7,,:'3

g
I,,,= Ae(Egp, —Ep)—— , (A3)

tun

where e is the magnitude of the electronic charge and 4
is the sample area. Note that this expression is correct
only for temperatures and applied biases small enough
that only electrons in a narrow range over which g, is
constant can tunnel. As was discussed earlier, at higher
temperatures, g, must be replaced with its thermal aver-
age. In the ‘“equilibrium tunneling” measurements
presented here, |Er, —Ep| is always kept less than kT
by suitable choice of measuring voltage. Given the tun-
neling current, it is simple to determine do,/dt and
dU,, /dt. These are given by

do, —ILin g
—_ - — = Ad
o e (Epp —Eg) - (A4)
and
dU, —ly, _ —Ade 8s
= =25 E. —E. ) . AS
dt Cw Cw ( Fo FS) Ttun ( )

Here, C,, is the capacitance, in the sheet charge model, of
the quantum well to the surroundings (substrate and top
gate). It is given by

c,=C %g (A6)
w geom xg —x, > :

where x,, and x, are the distances from the substrate
charge to the charge in the quanium well and top gate,
respectively, and C,.,y, is the “geometric capacitance,”
Ae/x,, of the quantum-well sheet charge to the sub-
strate.

Rewriting Eq. (A1) again using Eqgs. (A2)—(A6) gives
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d(EFw —EFS) — (EFw _EFS)
dt Tiun
Ae?g, Xy g
1— =2 | —qg,+== | .
Cgeom xg s gd

The solution of this first-order differential equation is of
course given by an exponential decrease of Ep, —Epg
with time. The relaxation rate is

Ae’g,

*w

—ng,+ L ] . (A7)
4 g4

In our samples, the sum of the first two terms in the
square brackets is, in zero magnetic field, of order ten,
whereas the third is unity or less. This means that the re-
laxation rates in our samples are typically faster than the
tunneling rates.

This difference between the relaxation rate and the tun-
neling rate can be explained heuristically as follows.
Consider one electron tunneling from or to the quantum
well. The transfer of this single electron not only reduces
the excess number of electrons on one side of the tunnel-
ing barrier but, because of the charge it carries, changes
the electrostatic potentials to reduce further the deviation
of the system from equilibrium. This “speeds up” the
equilibration of the two electron gases. At zero magnetic
field in our samples, the average quantum level spacing in
the 2D electron gas, 1/ de’g,, is about 10% of the elec-
trostatic energy for adding one charge to the well, e2/C,,.
This corresponds to about a tenfold increase in the equili-
bration rate compared to the tunneling rate.

2. Fitting to capacitance and loss tangent curves

Using the expressions above we can calculate the ca-
pacitance and the loss tangent for the device as a function
of frequency. We start by calculating the current
through the device after (at time ¢z =0) a voltage 8V is
suddenly applied between the top gate and the substrate.
Only the fraction of (x,, /x, )8V of the applied voltage ap-
pears between the well and substrate. Further, only the
fraction (x,, /x, ), of the current which moves between
the quantum well and the substrate should be counted in
the device current because the current only traverses part
way through the device. The total device current is then

x -
Idev(t)=(8V)Aez—gs—— T e t/T,
Ttun | Xg
5y, T | s
Tfast

Chign (high-frequency capacitance) is the capacitance of
the device with no current traversing the tunnel barrier.
In terms of device parameters, its value is 4€/X,. Tgy is
the charging time of the capacitance C;; due to any
resistance in series with our device. We consider 7, to
be much shorter than the period of the measuring signals
in our experiment.

The ac admittance of the device is given by je times
the Fourier transform of this “step response.” In the lim-
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it where 7, goes to zero, the ac current through the
sample is

Zw_

Xg

2 a)zrf +jor,
1+a>27'3

, &

Ttun

I=Ade

V +ja)Chigh V > (Ag)

where ¥ is the amplitude of the measuring voltage Ve/®",
The tunneling conductance is given by

2 &s

Ttun

Gy = Ae

(A10)

Rewriting Eq. (A9) again, dividing by the voltage, we find
that the device admittance is

_ x |" o :
Y(a))-—Gmn xg ] 1_'_(021_3
. Xw Ty
+JCO Gtun . 1_—}-@_27-2_’ +Chigh (Al].)

The term in the square brackets of this equation can im-
mediately be identified as the device capacitance. The
loss tangent for the sample is given by the real part of the
admittance divided by the imaginary part.

We can now write down the device capacitance and
loss tangent as functions of frequency. From Eq. (All)
for the sample admittance above, we find for the capaci-
tance

) CriohClowl 1 H{(F /S e e
C(f)=—Tigh 71 [1+(f fPakzl W
Chigh+clow(f/fpeak)
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and for the loss tangent

S/ peax
D(f)=2d o —— o .- (A12)
D=2y T F/Fpear?
Here, the loss tangent peak height D ., is given by
172
| Chign Ciow
D = £ ——1], Al3
peak [ Clow Chigh 1 ( )

and the frequency at which the loss tangent goes through
a peak f ., is related to the tunneling conductance in

~ the following fashion:

C Ciow .
— geom ow - _
Gran =27/ peak Cygeom CiowChign | Crigh : ] . ?

- Note that to arrive at Eq. (2) we have made substantial

use of the formulas relating g; and 77 to Cjy, Chgp, and
Cgeom described elsewhere. > The value of Coeom used
here is known to within 2% using the methods described
in Ref. 4. Note that in the presence of low in-plane con-

‘ductivity of the 2D electron gas, Eqs. (1) and (A12) must

be modified somewhat in order to properly fit the data.’>
The fits given by Egs. (1) and (A12) are identical to the
functional forms for the capacitance and the loss tangent
indicated by the circuit model of Fig. 1(b), but the inter-
pretation of the fitting parameters is different.
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